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Abstract

This paper evaluates the path–dependency/independency of the most widespread Portfolio

Insurance strategies. In particular, we look into various Constant Proportion Portfolio Insur-

ance (CPPI) structures and compare them to the classical Option Based Portfolio Insurance

(OBPI) and with naive strategies such as Stop-loss Portfolio Insurance (SLPI).

The paper is based upon conditional Monte Carlo simulations and we show that CPPI

strategies with a multiplier higher than 1 are extremely path-dependent and that they can

easily get cash-locked, even in scenarios when the underlying at maturity can be worth much

more than initially. This likelihood of being cash-locked increases with maturity of the CPPI

as well as with properties of the underlying’s dynamics and is a major drawback to investors.

To emphasise path dependency of CPPIs, we show that even in scenarios where the in-

vestor correctly “guesses” a higher future value for the underlying, CPPIs can get cash-locked

and lead to losses. This path-dependency problem is specific of CPPIs, it goes against the

European-style nature of most traded CPPIs, and it does not occur in the classical case of

OBPI strategies.

We expect that this study will contribute to reinforce the idea that CPPI strategies suffer

from a serious design problem.

Keywords: Portfolio Insurance, CPPI, OBPI, SLPI, path-dependencies, cash-lock, Condi-

tioned GBM Simulations
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1 Introduction

The idea of introducing insurance in investment portfolios was first proposed by Leland and Ru-

binstein (1976). The main motivation was to prevent the contagious disinvestment movements

observed in the stock market crash of 1973-74, which led to the loss of significant potential gains

in the subsequent 1975 rise.

Therefore, a portfolio insurance (PI) strategy would consist of an asset allocation strategy

between a risk-free asset and a risky asset, so that the combination would give the investor both

security, as a percentage of the initial investment guaranteed at maturity, and the possibility of

some participation in upside performance of the risky asset.

Leland and Rubinstein (1976) developed the first PI strategy, the Option Based Portfolio In-

surance (OBPI), realising that the risky asset can be insured by a put option written on it and

whose strike price is the amount to be insured. Although listed options are most of the times not

available for long maturities and with adequate prices for most investors, this difficulty could be

easily replaced by theoretically modeling the risky asset dynamics. Following the work of Merton

(1971), at the time the obvious was to consider the recently developed Black and Scholes (1973)

pricing model (BS model). Using the BS model, Rubinstein (1985) proposed an alternative to the

static OBPI, based upon the dynamic replication of an option. This synthetic OBPI, is an asset

allocation strategy between a risky and a risk-free asset, based upon the delta-heging of options,

and is what in fact is used by the industry. In fact, in most of the literature term “synthetic OBPI”

is shortened to just “OBPI”, as the static OBPI is rarely used.

A few years later, Perold (1986) proposed an alternative PI strategy, the Constant Proportion

Portfolio Insurance (CPPI). CPPI strategies were understood as a possible solution of the Merton

(1971) problem, for an investor with hyperbolic absolute risk aversion (HARA) utility function.

That is, CPPIs were proposed as possible solutions to a very concrete mathematical problem, under

extreme assumptions, not only on the risky asset dynamics, but also on the way investors make

decisions. For further discussion of this issue see, for instance, Kingston (1989).

No matter the reasons underlying its creation, a CPPI strategy can be understood as a model-

free dynamic asset allocation between a risky and a risk-free asset, that is able to guarantee a

certain percentage of the initial investment at maturity, just like an OBPI. From a design point of

view, however, it is considerably simpler than the classical synthetic OBPI. Its simpler implemen-

tation made CPPIs very appealing to a great number issuers, who did not need to rely on any model

to manage them. The term “constant proportion” derives from the fact that for every rebalancing

date, the amount of the portfolio invested in the risky asset (exposure) is proportional to the so

called “cushion”. This cushion is nothing but the difference between the total portfolio value at

that instant, and the present value of the amount insured at maturity. This present value is known

as the “floor”. The proportionality factor is fixed at inception for the entire investment period as a

“multiplier”, m > 1.

Since the first appearance of OBPI and CPPI strategies, an extensive literature has sprouted on

the subject, with different objectives and methodologies.

Most studies concerned the theoretical properties of continuous-time PI, see for instance Book-

staber and Langsam (1988) or Black and Perold (1992), and references therein. This stream of the

literature was mainly focused in solving an optimisation mathematical problem, that arises based

upon the classical expected utility theory of Von Neumann and Morgenstern (1944), and assumes

investors maximize their end-of-period expected utility. Recently, Balder et al. (2010) has shown

that even under the classical assumptions, CPPIs would only be optimal strategies. forcing the ex-
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ogenously given guarantee into the utility maximisation problem itself. Nowadays, however, the

classical expected utility theory itself has been under discussion in academia since the emergence

of behavioural finance. Behavioural finance argues that some financial phenomena can plausibly

be understood using models in which some agents are not fully rational. For an overview on be-

havioural finance we refer the reader to survey of Barberis and Thaler (2003). Dichtl and Drobetz

(2011) and Gaspar and Silva (2015) evaluate to which extent different behavioural theories would

help understanding PI investments. Their results show these theories may indeed help understand-

ing the usage of some (but for all) PI strategies. In particular, CPPI strategies cannot be understood

in this context.

A second stream of the literature focused on comparing the strategies with respect to perfor-

mance, or distribution of returns and stochastic dominance, using Monte Carlo simulations, and

relying on theoretical models for the underlying risky asset. Initially the standard approach was to

consider a BS model (see e.g. Black and Rouhani (1989), Bertrand and Prigent (2002, 2005) and

Bertrand and Prigent (2011)), comparing the strategies mainly in terms of risk and performance

measures. Later the analysis focused on distribution properties and stochastic dominance. See, for

instance, Annaert et al. (2009) and Zagst and Kraus (2011), Bertrand and Prigent (2011) or Costa

and Gaspar (2014). This literature also extended the classical BS model and considered all sorts of

alternative models for the underlying risky asset, including jumps-models as in Cont and Tankov

(2009) or regime switching models as in Weng (2013). Here the results are mixed, but the more

recent studies clearly show that CPPI strategies, present an odd distribution of returns with high

probability of returns very close to the floor and quite very low probability of extreme positive

returns. Moreover, CPPIs with a multiplier higher than 1 tend to be stochastically dominated by

naive portfolio strategies.

A third stream of the literature uses observed empirical densities instead of models, which

is considered to be more realistic. Cesari and Cremonini (2003), Köstner (2004) compare an

extensive variety of the most used PI strategies – OBPI and CPPI – arriving at the conclusion that

CPPI has better performance only in bear and no-trend markets. Almeida and Gaspar (2012) show

however, even in that case, CPPIs, are still dominated by naive strategies.

Finally, more recently, a fourth stream has emerged, first identifying problems with the design

of CPPI strategies and then proposing modifications to overcome the identified problems. In terms

of proposed modifications Pain and Rand (2008) summarised some of the developments until

then, from which we highlight the “cushion insurance” of Prigent and Tahar (2005). After that

it is worth mention, the dynamics proportions proposed by Chen et al. (2008) or the contingent

retracted floor of Lee et al. (2013). Hocquard et al. (2015) proposes alternative strategies with

pre-specified distributional properties that present much better results than CPPIs and Bernard

and Kwak (2016) suggests modifications taking the perspective of the pension funds industry and

long-term investors.

For a more detailed overview on PI, we refer to the survey study and the encyclopedia article

of Ho et al. (2010) and Ho et al. (2013), respectively.

This paper is closest to the second stream of the literature, but differs from the existing litera-

ture by (i) taking a completely different perspective and, (ii) using, in the context of PI, a recently

proposed Monte Carlo conditional simulation technique.

We are going to consider the perspective of an investor who believes the underlying risky asset

will have a positive performance until maturity (if he does not expect that he would not invest in

the risky asset to start with). We also consider our investor dislikes risk, so despite his positive
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expectation, he would still like to guarantee some percentage of the initial investment at maturity

(in case his expectations do not realize). We assume nothing else about our investor.

Similarly to most of the literature, we consider a BS model for the underlying risky asset,

i.e. we assume it follows a Geometrical Brownian Motion (GBM). Nonetheless, this represent no

limitations as our results would only be even stronger if we would consider empirical densities

or jump models. See the detailed discussion in Almeida and Gaspar (2012) on what concerns

empirical densities, or on the impact of jump models. Our idea here is to take the classical setup

and to consider an investor with some subjective expectation about the future value of the risky

underlying at maturity, ST . We then use path dependent Gaussian processes vectorial simulation
technique proposed in Sousa et al. (2015) to impose a terminal value on ST . This allows us to focus

on path-dependencies/independencies of the various strategies. We look into various CPPIs and

compare them not only with the classical OBPI but also with naive portfolio insurance strategies,

in the spirit of Costa and Gaspar (2014).

We consider CPPIs with multipliers, m = 1, 3, 5. Multipliers of the order of 3, 5 or even

higher are quite common in the real life products. On the other hand, a CPPI 1 (m = 1) is not

a true CPPI. In fact, a CPPI 1 is simple static naive strategy where one deposits at inception the

present value of the future guarantee and invests only the remaining in the risky-asset. In this

paper CPPI 1 is, thus, a naive portfolio insurance strategies one should always keep in mind as

feasible and that requires no management whatsoever. A second naive strategy is, of course, the

well-known Stop-loss Portfolio Insurance (SLPI), that consist in investing at inception 100% in

the risky asset, keep track of its evolution and disinvest from the risky asset to a risk-free deposit

as soon as its value touches the present value of the future guarantee. This is always feasible and

portfolio insurance strategies that did emerge after the crisis of 1973-74 intended to improve on

possible negative effects of massive disinvestments in crisis periods, associated with this strategy.

Consistently with Costa and Gaspar (2014) we will show that under some circumstances CPPIs

with m > 1 also lead to massive disinvestments, as they are also extremely path-dependent with

the disadvantage that their maturity-return distribution is worse than the SLPI return distribution,

for risk-averse investors.

Our approach allows us to clearly evaluate the path–dependency/independency of the various

PI strategies. For the particular case of CPPIs we show: (i) they are extremely path-dependent,

and that (ii) they can easily get cash-locked, even in scenarios when the underlying at maturity can

be worth much more than initially. We expect that this study will contribute to reinforce the idea

that CPPIs are ill-designed PI strategies, bearing therefore an enormous design risk to investors.

The paper is organised as follows. In the following section, we expose the setup and nota-

tion necessary to comprehend the construction of the different strategies under analysis. We also

provide a final example depicting a situation where the CPPI 3 and 5 could become cash-locked.

In Section 3 we present the methodology used in the simulation of the risky asset, the parameter

scenarios involved and and the statistical methods. Section 4 presents and discussed the results

obtained. Section 5 summarises our main conclusions and discusses further research on this topic.
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2 Portfolio Insurance

We consider the price process of a risky asset , S (e.g. stock), whose dynamics are driven by a

geometrical Brownian motion (GBM) , and a risk-free asset, B.

A PI strategy can be represented for every t ∈ [0, T ] by the pair (νB, νS), which denotes the

exposure to the risky and risk-free assets, respectively. The strategy’s value (V p
t )t∈[0,T ] is hence

given by V p
t = νBt Bt + νSt St (Balder and Mahayni, 2009). We only consider self-financing PI,

i.e. with no exogenous injection or withdrawal of money during ]0, T [. Naturally, the CPPI, OBPI

and SLPI strategies correspond to this type of strategies which can only purchase more assets if

they have previously sold others. This self-financing property implies

dV p
t = νBt dBt + νSt dSt, (1)

and typically the insured component of the investment can be translated into the expression

BT = ηV p
0 , (2)

where η (typically ranging from 80% to 100%) is the percentage of the initial invested capital to

be insured. Assuming non-arbitrage, at t = 0 we have νS0 > 0 and hence V p
0 > νB0 B0, which

mean η is limited to the future value of the initial portfolio investment, and therefore 0 ≤ η < erT

(Zagst and Kraus, 2011). In other words, an investor can never insure more than the capitalised

value of its investment.

2.1 Stop-Loss Portfolio Insurance (SLPI)

As its name suggests, this simple strategy consists on the portfolio being entirely invested into the

risky asset, and if it falls below the investor’s pre-established floor Ft, the portfolio is automatically

rebalanced into the risk-free asset. The floor is a representation of the bond with continuously

compound deterministic interest r in [t, T ]:

Ft = FT e
−r(T−t). (3)

Thus, the portfolio value of the SLPI strategy can be formally defined by

V SLPI
t =

V0

S0
St1{τ>t} + Ft1{τ≤t}, (4)

where τ = inf{t > 0 : V SLPI
t = Ft} is the first instant that the portfolio ‘touches’ the floor

barrier, if it exists.1 The indicator functions (1{τ>t}, 1{τ≤t}) are respectively (1, 0) if τ /∈]0, t] -

i.e., in this period the portfolio never touched the barrier - and (0, 1), otherwise. Therefore, SLPI

is clearly a path-dependent strategy because its value at t depends on wether the risky asset path

dropped at touched the floor before t, or not. In other words, if we imagine two stock paths leading

to the same ending, if one has reached the floor barrier and the other has not, the final portfolio

value will be FT and ST , respectively.

1Note that we do not include t = 0 because it would mean deliberate investment in the risk-free asset. Also note

that if {t > 0 : V SLPI
t = Ft} = ∅, then its infimum is ∞ and the definition also holds.
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2.2 Option Based Portfolio Insurance (OBPI)

An European option is a T – contingent claim where the investor purchases the right, but not the

obligation, to buy (call) or sell (put) the underlying asset at maturity at a specified strike price K.

Φ(ST ) = max[(ST −K), 0]. (5)

An OBPI strategy, as introduced by Leland and Rubinstein (1976) can be understood as a static

strategy that consists of investing the amount F0 = FT e
−rT in the risk-free asset and using the

remaining to buy q European call options with strike price K, such that:

V OBPI
0 = qCall(0, S0) + FT e

−rT , (6a)

FT = qK, (6b)

where FT = ηV OBPI
0 - recall Equation (2) - and thus, both q and K are uniquely determined.

Since this OBPI is a static PI strategy, once we have all parameters set to begin the strategy, no

further calculations are required until t = T where the exercise of the contract takes place and the

value of the portfolio is given by

V OBPI
T = qmax[(ST −K), 0] + FT =

{
qST if ST > K
qK if ST < K .

(7)

As it was mentioned before, listed options are usually unreachable to most investors. An

alternative solution to this problem is to dynamically replicate the European call option, creating

a dynamic PI strategy consisting of investments in the risky-asset and the risk-free asset only. In

other words, we want (νB, νS) such that it matches the performance of an OBPI strategy for every

t ∈ [0, T [. Again, since we consider only the simple case of European call option, the model can

deliver a closed-form price function for this type of option.

In the B-S framework asset B is also considered a continuously compound zero-coupon bond

(ZCB) at risk-free interest rate r and St follows a geometric Brownian motion (GBM), i.e.

dBt = rBtdt ⇒ Bt = BT e
−r(T−t), (8a)

dSt = St(μdt+ σdWt) ⇒ St = S0e
(μ−σ2

2
)t+σWt , (8b)

where (Wt)t∈[0,T ] is a Brownian motion and μ > r ≥ 0 and σ > 0 are commonly referred to as

the drift and volatility parameters, respectively. With this model, the call function can be obtained

by introducing the contract function of Equation (5) as a boundary condition to the B-S partial

differential equation, yielding the following solution (for derivation of the B-S equation see, e.g.,

Hull (2009)):

Call(t, St) = St N (d1)−Ke−r(T−t)N (d2), (9)

where N (.) ≡ N (0, 1; .) is the cumulative distribution function for the standard normal distribu-
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tion and

d1 ≡ d1(t, St) =
1

σ
√
T − t

[
log

St

K
+

(
r +

σ2

2

)
(T − t)

]
(10a)

d2 ≡ d2(t, St) = d1 − σ
√
T − t. (10b)

Hence, the replicated portfolio is given in terms of asset numbers by νBt = q[1 − N (d2)] and

νSt = qN (d1) for t ∈ [0, T [ and for t = T , Equation (7) also holds.Note that this strategy is

model dependent, as it is necessary to estimate a proper value for σ, the volatility of the risky

asset. Figure 1 illustrates a synthetic OBPI path.

2007 2008 2009 2010 2011 2012
0

20

40

60

80

100

120

140

OBPI

DJ Euro Stoxx 50

Figure 1: Synthetic OBPI strategy applied over DJ Euro Stoxx 50 index: V0 = 100; r = 4%;

η = 100%, σ = 23.67%; T = 4.378 (years from 6/1/2006 to 2/4/2012).

2.3 Constant Proportion Portfolio Insurance (CPPI)

2.3.1 Standard CPPIs, m >1

A CPPI strategy is a dynamic asset allocation, that at any moment t, keeps track of the present

value Ft of the future guarantee required by the investor. The process (Ft)t∈(0,T ) is called the

floor. The difference between the portfolio value V cppi
t and the floor, is called cushion and defined

as Ct = V cppi
t − Ft for all t ∈ (0, T ).

In a CPPI one invests a leveraged amount m × Ct in the risky asset, and the remaining is the

risk-free asset. The multiplier m is kept fixed trough the entire investment time and defined in

the product’s term sheet. Typical multiplier values range from m = 2 to m = 7. The amount

invested in the risky asset is called the exposure of the portfolio V cppi to the risky asset and we

shall denote it by (Et)t∈(0,T ). The amount invested in the risk-free asset B is simply the rest of

the portfolio value V cppi
t − Et, for all t ∈ (0, T ). To compare with Equation (1) one can also
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write V = Et
St
St +

Vt−Et
Bt

Bt, so that νSt = Et
St

and νBt = Vt−Et
Bt

. At any moment, t ∈ (0, T ), the

exposure to the risky asset is given by

Et = mCt = m(V cppi
t − Ft) . (11)

Note that if the portfolio value approaches the floor, the cushion diminishes, and so does the

exposure to the risky asset. In case the portfolio value touches the floor the cushion is zero and,

thus, zero we get exposure to the risky asset in any future date. When that happens the CPPI

strategy gets cash-locked and will only pay at maturity the guaranteed amount. From the moment

it touches the floor a CPPI becomes a static strategy with 100% investment is the risk-free asset

(zero-coupon bonds (ZCBs)).

Just for illustration purposes, let us suppose at t = 0 an investor invests 100 in a CPPI strategy

with m = 3 and with full guarantee (η = 100%), i.e FT = 100 . Consider r = 4% and T = 5
years, so we have F0 = 100e−0.04×5 ≈ 81.87 and C0 = 100−81.87 = 18.13. Therefore, initially

we have E0 = 3C0 = 54.39 invested in the risky asset and the rest 100 − E0 = 45.61 in ZCB.

After the initial portfolio composition, the exact evolution of St plays an important role. Assume,

to simplify, that the next trading day takes place exactly a year after (t = 1) and S has risen 10%.

We have F1 = 85.21 and hence V1 = 54.39(1 + 10%) + 45.61F1
F0

= 107.3, because B evolves at

the same rate of Ft, r. Therefore, C1 = 107.3−85.21 = 22.09, E1 = 66.27 and V1−E1 = 41.03.

An example of CPPI 3 applied to the DJ Euro Stoxx index index is shown at three different dates

in Figure 2. We can see in this case that the exposure proportion becomes very short which mean

the investment ended practically cash-locked.

CPPI, m�3; DJ Euro Stoxx 50

Floor Cushion Zero�Cupon Bonds Risky Asset Exposure

2873.13

778.056

1317.02

2334.17

3109.69

1015.3

1079.1

3045.89

3373.12

136.216

3100.69

408.649

Date

1000

2000

3000

4000

05�01�2006 28�12�2007 08�01�2010

Figure 2: Bar chart of CPPI 3 structure at three different dates. Underlying Asset: DJ Euro Stoxx 50 index.

In the illustration of Figure 2 we considered only three rebalancing dates. In real life situations

the rebalancing of CPPI strategies is done either daily or at least weekly, as one needs to prevent

for the possibility of crossing the floor within rebalancing dates. Also, most times there is an

additional rule establishing a positive lower limit to cushion value (and not zero) as the trigger to
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invest all in the risk-free asset.

2.3.2 The special case of a CPPI 1, m = 1

CPPI strategies with m = 1 do not exist in real life. In this study we consider the case of CPPI 1

strategies, as they are simple naive static portfolio insurance strategies. In fact, a CPPI 1 is simple

static naive strategy where one invests, at inception, the present value of the future guarantee in the

risk-free asset and invests only the remaining in the risky-asset. CPPI 1 is, thus, a naive portfolio

insurance strategy one should always keep in mind as feasible and that requires no management

whatsoever.

In this study we consider two naive portfolio insurance (PI) strategies – SLPI and CPPI – and

three non-naive ones – OBPI, CPPI 3 and CPPI 5. Section 3 describes the methodology used and

its financial intuition.

3 Methodology

In this paper we focus on the differences across strategies, when both the initial value S0 and the

terminal value ST of the risky asset are known. This analysis is suggested as a way to analyze

path-dependencies of PI stratgies. We model stock trajectories using a GBM, however in terms

of the simulations we need to impose that all geometric Brownian motion paths are tied to ST at

maturity.

3.1 Conditional GBM simulation

To generate the conditioned GBM paths, we use gaussian processes for machine learning regres-

sion (GPR), which is given by Rasmussen and Williams (2005). Following this work, applications

to different stochastic processes are provided by Sousa et al. (2015), in particular for the GBM.

The GBM follows a lognormal distribution, which means its logarithm is a gaussian process.

Therefore, we generate a process yt which is a Brownian Motion with drift and conditioned to yn
(Brownian Bridge) and obtain the GBM by exponentiation i.e. St = S0e

yt .

In the general case, the purpose of GPR is to obtain the non-linear regression function y =
f(�x) that maps the data (X, �y) called the training set, assuming a specific prior gaussian process,

i.e GP ∼ N (m(�x, cov(�x1, �x2)). The matrix X gathers the n vectors �xi = x1i , . . . , x
d
i which

contain the d parameters that originate the corresponding n observations yi = f(�xi) with i =
0, . . . , n. In the present case however, this setting is much more simplified because �x = t and the

training set reduces to the single observation (tn = T, yn = log ST
S0

). The remaining time steps

t0, t1, . . . , tn−1 are collected in the vector t∗ called the test set and represent the instants where

y∗i = f(t∗i ), i = 0, . . . , n− 1 was not observed.2 The regression process is also gaussian and it is

obtained by the mean and covariance functions of the process defined by all the trajectories of the

2The arrow representation was only used to represent the general case of a vector with i = 1, . . . , d different

parameters. In this case we use only one parameter, t. Different points k = 0, . . . , n are collected in vectors represented

by bold font, e.g. t = (t0, t1, . . . , tn)
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prior process that passes through the training set. Since the process is gaussian, we have

[
yn
y∗

]
∼ N

([
m(T )
m∗

]
,

[
cov(T, T ) cov∗�

cov∗ cov∗∗

])
(12)

where m∗ =
(
m(0),m(t1), . . . ,m(tn−1)

)
, cov∗ =

(
cov(0, T ), cov(t1, T ), . . . , cov(tn−1, T )

)
and the matrix elements (cov∗∗)ij = cov(t∗i , t

∗
j ), with i, j = 0, 1, . . . , n − 1. The conditional

distribution is given by

p(y∗ | t∗, T, yn) ∼ N
(
m∗ +

yn −m(T )

cov(T, T )
cov∗, cov∗∗ − 1

cov(T, T )
cov∗cov∗�

)
, (13)

where one should note that cov∗cov∗� must be read as an outer product resulting in a n × n
matrix with elements cov(ti, T ) · cov(tj , T ), i, j = 0, . . . , n − 1. The mean and covariance of

this process are used to build respectively the regression function and regression confidence, by

extending to the whole t set. Therefore, the posterior process on the data has the following mean

and covariance functions

mD(t) = m(t) +
1

cov(T, T )
cov(t, T )(yn −m(T )), (14a)

covD(s, t) = cov(s, t)− 1

cov(T, T )
cov(s, T )cov(t, T ), (14b)

Hence, using Equations (14a–14b) we can simulate any path of a gaussian process with mean m
and covariance cov that passes through (in this case end at) (T, yn). In our particular framework,

we deal with a Brownian motion with mean and covariance given by

m(t) =

(
μ− σ2

2

)
t, (15a)

cov(s, t) = σ2min(s, t), (15b)

where μ and σ are again the drift and volatility, respectively. The imposition of the training

set (T, log ST
S0

) will particularize equations 14. Noting that cov(ti, T ) = σ2ti, ∀i=0,...,n, eq. 14a

simplifies significantly to

mD(t) =
(
μ− σ2

2

)
t+

σ2t

σ2T

[
log

ST

S0
−

(
μ− σ2

2

)
T

]
=

t

T
log

ST

S0
. (16)

This result as the important meaning that mD(t) does not depend on μ, which also means that

the GBM tied to one point gives place to the natural reparametrization of μ by μ̃ = 1
T log ST

S0
=

log
[(

ST
S0

)1/T ]
. We should in fact expect this result, because the risky asset is assumed log-normal

which means that the annualized return will be eμ̃ =
(
ST
S0

)1/T
. Additionally Equation (14b) can

also be reduced to

covD(s, t) = σ2(min(s, t)− st) = σ2

{
s− st , s ≤ t
t− st , s > t .

(17)
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Now the Brownian bridge path can be obtained by (see Glasserman (2003))

B = mD +CZ, (18)

where C is the Cholesky decomposition of covD, i.e. the covariance matrix whose elements

are given by Equation (17), and Z is a vector of the standard normally distributed N (0, I) random

numbers. Finally, the GBM paths are simulated by exponentiation of the Brownian bridge process,

i.e St = S0e
Bt so that ST = S0e

logST /S0 .

Figure 14 illustrates the method described above, presenting two conditional GBM paths for

two pre-fixed values at maturity.

0 1 2 3 4 5

100

150

200

250

300

350

Figure 3: Two geometric Brownian motion paths conditioned to ST = 100 (red) and ST = 300 (blue), simulated

with gaussian processes for machine learning regression. T = 5 and Δt = 1/100.

XXX TO DO: financial intuition XXX

XXX TO DO: Explain discretization of other strategies or make reference XXX

3.2 On CPPI discrete implementation

In the context of a continuous-time model such as the BS model (in Equation (8)), the pair (νS , νB)
in Equation (1), for the CPPI is given by

dVt =
Et

St
dSt +

Vt − Et

Bt
dBt . (19)

For the BS model, the CPPI value evolution follows immediately,

V cppi
t = V cppi

0

[
ηe−r(T−t) + (1− ηe−rT )eλt

(
St

S0

)m
]
, (20)

where λ = (1−m)(r +mσ2

2 ) and η as defined in Equation (2).
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We now proceed with an intuitive approach to CPPI in a discrete-time basis, making it more

identifiable with the real world.3. Contrary to the continuous case, in the “real world”, traders are

restricted to the official rebalancing dates defined in the product’s term sheet. Therefore, one must

be prudent when choosing the multiplier, as the strategy can only insure that Vt ≥ Ft for a limited

drop in the market between two consecutive rebalancing dates. The risk of the stock dropping at

a rate greater than the threshold is called gap risk. The smaller the period between rebalancing

dates, the smaller the gap risk. In practice, as previously mentioned, gap risk is avoided by a

covenant in the term sheet that allows to transfer the entire investment to the risk-free asset even

with a positive (but small) cushion.

Let us consider the simplest case of a partition of the time interval [0, T ] consisting of n + 1
equidistant tk time steps, i.e t0 = 0 < t1 < . . . < tn = T and tk+1 − tk = T/n ≡ Δt, ∀k=0,...,n.

Now, from the self financing condition, the discrete form of Equation (19) can be rewritten in

terms of tk, i.e ΔVk+1 ≡ Vk+1 − Vk and is given by (to ease the notation let xtk ≡ xk):

ΔVk+1 =
Ek

Sk
ΔSk+1 +

Vk − Ek

Bk
ΔBk+1. (21)

As we consider the non-existence of short-selling, the CPPI exposure has to be defined with an

inferior barrier of zero, i.e

Ek = max[mCk, 0] =

{
m(V cppi

k − Fk) if V cppi
k ≥ Fk

0 if V cppi
k < Fk.

(22)

Note that in the continuous case, the null branch is not necessary because continuous rebalancing

makes sure that Vt ≥ Ft, ∀t ∈ [0, T ]. Hence we see that the assets’ weights are νSk = max[mCk,0]
Sk

and νBk = Vk−max[mCk,0]
Bk

, so the portfolio value is given by

V cppi
k+1 =

⎧⎪⎨
⎪⎩

m
(
V cppi
k − Fk

) Sk+1

Sk
+

(
V cppi
k (1−m) +mFk

) Bk+1

Bk
if V cppi

k ≥ Fk

V cppi
k

Bk+1

Bk
if V cppi

k < Fk .
(23)

Thus, given the inputs V0, η, r, T and m we obtain F0 and E0. For all k, with Bk
Bk−1

= e−r(T−tk)

e−r(T−tk−1)
=

er(tk−tk−1) = erT/n we get Fk = Bk
Bk−1

Fk−1, and at last, given Sk we have all that is neces-

sary to know the following Vk, (k = 1, . . . , n) by the recursion expression in Equation (23). In

other words, in every time step tk+1, CPPI algorithm invests the previous Vk, allocates Ek =
m(Vk − Fk) ≥ 0 in S and Vk − Ek in B, and obtains Vk+1 by the stochastic variations of S and

the known growth of B. Figure 4 shows an application of the CPPI strategies on a world stock

index, considering as rebalancing dates all trading dates and full capital guarantee at maturity. For

this particular real life instance we observe a bad performance of the underlying risky asset, and

that all CPPIs (by definition) where able to guarantee the capital. Nonetheless we note cash-lock

occurrences for CPPI 3 and 5, but not for CPP 1 that under the circumstances was the best strategy

(despite its “naivety”).

3For a more formal approach and details we refere to Brandl (2009).
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Figure 4: CPPI 1, 3 and 5 applied over DJ Euro Stoxx 50 index. V0 = 100; r = 4%; η = 100%.

3.3 Parameters

The simulations count on two types of parameters to implement: (i) the procedure parameters,

which are fixed for every simulation; and (ii) the scenario parameters, which will assume different

values that to recreate different scenarios.

Procedure parameters:

• The initial portfolio investment V0 = 100;

• the rebalancing frequency, i.e, constant time increments are Δt = 1/100, which can be

thought as the distance between rebalancing dates measured in years;

• the number of time steps is n = T/Δt;

• the number of paths / simulations N = 10000 (as in Annaert et al. (2009)); and

• the risk-free interest rate r = 4%.The choice of the 4% is among the values generally used

in the literature. See, e.g. 5% in Costa and Gaspar (2014), 3% and 4% in Cont and Tankov

(2009).

Scenario parameters:

• the volatility of the stock, σ:{15%, 40%};

• the percentage of the initial portfolio to be insured η:{100%, 80%};

• the maturity of the investment T :{5, 15} ; and

• tsock value at maturity ST :{100, 150, 200, 250, 300}.
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The combination of all scenario parameters result in considering 40 different scenarios. The main

difference on this scenario setup with respect to other literature, is the fixation of ST (instead to

the usual μ on the risky asset dynamics).

The present work also extends the scenarios used in Costa and Gaspar (2014) by introducing

T = 15 to the analysis, since long maturities can be found in some PI products. Another particu-

larity is the choice of ST values all above S0 = 100. The reason is due to the fact that for negative

rates of return of the underlying risky asset, PI strategies will return only the guarantee as they end

invested almost entirely on the risk-free asset. Here we are concerned mainly concerned with the

performance of PI strategies, under scenarios where the underlying risky asset actually performs

well until the maturity. These are also the only scenarios where CPPI strategies, with a multiplier

higher than one, may outperform the remaining strategies.

Figure 5 below is an illustration of 8 conditioned GBM evolutions with the associated CPPI

1, CPPI 3 and CPPI 5 outcomes. In Figure 5 (a)-(b) we impose ST = 100, in Figure 5 (c)-(d)

we impose ST = 200, in in Figure 5 (e) we impose ST = 300, in Figure 5 (f)-(g) we impose

ST = 300 and in Figure 5 (h) we impose ST = 800.

A few comments are needed at this point. Although these are just 8 particular paths, it is

interesting to notice that in all presented instances the CPPI 5 ends up getting cash-locked, even in

the case when the risky asset increases 8 times during the investment period. The same happens to

CPP 3 in six out of our eight instances. Moreover, in the instances CPPI 3 did not get cash-locked

its outcome is extremely close to the floor.

From a different perspective we realise the investment horizon matters enormously. As the

investment horizon increases, the higher is the risk that at some point a CPPI value with a multiplier

higher than one, will approach the barrier and eventually get cash-locked. In particular, from

Figure 5 (h) we see that even if the risky asset increases drastically early in the investment time,

that does not make CPPI 5 ou CPPI 3 less risky, on the contrary, the amplifying effect of the

multiplier do allow to potential huge gains in the very beginning, but it also amplifying the speed

at which the strategy approaches the floor in an event of a drop is the value of the underlying risky

asset.

Finally, we also notice that in all presented instances CPPI 1 – a very naive strategy – outper-

formed CPPI 3 and CPPI 5.

In the next section, we will of course, focus on more realistic scenarios and for each scenario

we look into 10 000 paths. Still, we find the images in Figure 5 illustrative of what we think are

the main risks of CPPIs with a multiplier higher than one.

3.4 Distribution Analysis and Stochastic Dominance

In order to analyse and confront the aforementioned PI strategies we have chosen two of the most

significant statistical methods used in the literature.

One is the direct study of the various PI payoff distributions at maturity. The first four moments

are often used in literature because they can easily be interpreted and much information can be

withdrawn about the shape of the payoff distributions (see e.g. Prigent and Bertrand (2003);

Pezier and Scheller (2011) and Khuman et al. (2008) uses log-moments). Here we opt to present

the actual distributions and to compute additional measures of performance, besides the first four

moments.

Additionally, as we are specially concerned with the investor’s perspective, we also perform

a Stochastic Dominance (SD) analysis. Stochastic Dominance was introduced first by Quirk and
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Figure 5: Illustration of GBM conditional, with fixed value for ST , and the evolution of the various

CPPIs, full capital guarantee. In (a)-(b) ST = 100, in (c)-(d) ST = 200, in (e) ST =300, in (f) and

(g) ST = 500 and, in (h) ST = 800.
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Saposnik (1962), and later by Hadar and Russell (1969) and Whitmore (1970) (for higher SD

orders), as a more general decision rule than the moment analysis, based on the expected utility

maximisation principle. Despite the fact that this framework assumes investors are von Neumann-

Morgenstern-rational and maximize expected utility (Linton et al., 2005), SD analysis allows many

times for stronger conclusions than the simple and direct analysis of distributions, as it is able to

embed in the analysis the typical risk-aversion behaviour of PI investors.

We consider the three orders: first-order SD (FSD) on which is assumed that investors choose

only the portfolio with the highest payoff, i.e have utility functions with positive first derivative

(Biswas, 2012); second-order SD (SSD) that implies a concave utility function, meaning that risk

aversion increases; and the third-order SD (TSD) which requires that investors have convex utility

functions, i.e., are risk-seekers when their wealth grows.

In Section 4 we present and discuss our main findings.

4 Results

4.1 Payoff Distributions

Figures 6 to 13 show the distributions of payoffs associated with the various PI strategies under

analysis, for different scenario parameters.

It is worth pointing out once more that these are conditional distributions to the extent that we

impose a fixed final value to the underlying risky asset at maturity, ST .

In particular for PI strategies are not path dependent, i.e. if the payoff does not the depend on

the actual evolution, but just on the value of the underlying at maturity, one observes degenerate

distributions, with full mass at one point.

As the images below show, the non path-dependent strategies are the OBPI and the CPPI 1.

Therefore, CPPI 1 and OBPI distributions are degenerate with a single 100% weighted bar. The

OBPI values were computed according to the BS model (recall from Section 2.2 that we use the

Synthetic OBPI) while the CPPI 1 payoff at maturity is simply the sum of the insured amount ηV0

plus the amount invested in the risky asset, i.e. V0 − ηV0e
−rT .

The SLPI is path dependent in a very specific way, as its density depends only on whether or

not the underlying risk asset touches the floor, so it presents only two possible outcomes. On the

other hand, CPPI 3 and CPPI 5 prove to be extremely path dependent in all scenarios.

In the first set of figures (Figures 6–7) we assume full guarantee of capital (η = 100%) and an

investment period of 5 years (T = 5). The different between Figures 6 and 7 is that in the latter

we impose a much higher volatility on the underlying risky process, σ = 15% and σ = 40%,

respectively. One clearly sees that the higher the volatility of the underlying, the higher is the

likelihood of CPPI 3 and 5 getting cash-locked.

In Figures 8 and 9 we have increased the investment period to T = 15 (as opposed to T = 5
in Figures 6 and 7). From the comparison, it is evident that, as the investment period increases

the probability of CPPI 3 and CPPI 5 getting cash-locked converges to one and that converge rate

is higher the higher the volatility of the underlying asset. Figure 9 shows 100% probability of

cash-locked for CPPI 3 and 5 for σ = 40%, even in the case when the underlying risky asset goes

from S0 = 100 to ST = 250.

Tables 1 to 5 summarise the distributions in terms of their first four moments, i.e, the mean,

variance, skewness and kurtosis. Actually the second and fourth moments are adjusted to their
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Figure 6: Payoffs at maturity, η = 100%, T = 5, σ = 15%
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Figure 7: Payoffs at maturity,η = 100%, T = 5, σ = 40%
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Figure 8: Payoffs at maturity, η = 100%, T = 15, σ = 15%
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Figure 9: Payoffs at maturity, η = 100%, T = 15, σ = 40%
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Figure 10: Payoffs at maturity, η = 80%, T = 5, σ = 15%
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Figure 11: Payoffs at maturity,η = 80%, T = 5, σ = 40%
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Figure 12: Payoffs at maturity, η = 80%, T = 15, σ = 15%
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Figure 13: Payoffs at maturity,η = 80%, T = 15, σ = 40%
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most used and more easily interpretable forms: respectively the standard deviation which is the

square root of the variance, and the excess kurtosis which is simply equal to kurtosis - 3. The

latter adjustment takes advantage of the fact that normal distribution has 0 kurtosis, hence makes

comparison more intuitive. All moments are obtained from the density functions of the portfolio

payoffs at maturity, VT , for each PI strategy in all scenarios.

In all tables, the different ST values displayed on the left column can also be interpreted as the

result of a pure Buy and Hold (B&H) strategy with initial investment of S0 = 100. Hence we can

compare directly the path-independent strategies with the simplest B&H strategy.

As to the path-dependent strategies – CPPI 3 and CPPI 5 – one must be framed carefully with

the other moments.

We begin the moments’ analysis with the mean values in Table 1. CPPI 1 strategy mean values

do not vary with volatility (path-independence). In general, CPPI 1 exhibits a slight improvement

from η = 100% to η = 80% and longer maturity. It outperforms the B&H strategy in the (ST =
100 , T = 5) and (ST = {100, 150} , T = 15). Moreover, CPPI 1 has a better performance than

the OBPI strategy for high volatility and long maturity, but also for ST ≤ 150 when (σ = 15%,

T = 15) and (σ = 45%, T = 5). CPPI 3 is highly dependent on σ which is due to its path-

dependency. The low mean values for σ = 40% suggest high cash-lock occurrences. While in

both volatility cases those occurrences may obviously decrease under higher ST realisations, only

for σ = 15% we can see possible cases of CPPI 3 performing better than B&H in two particular

instances (ST = 300 , η = 100%) and (ST ≥ 200 , η = 80%). The CPPI 5 means also show

an extreme dependence on the volatility and maturity as cash-lock events may happen for almost

every simulation for σ = 40% and T = 15. However, for σ = 15% this strategy can outperform

B&H not only for (ST = 300 , η = 100%) and (ST ≥ 200 , η = 80%) cases. As for the OBPI we

can see that even though it is a path-independent strategy the mean values decrease with volatility

because the synthetic OBPI is model dependent, and the European call option prices increase

with σ. Therefore we verify that there no case OBPI is expected to outperforms the B&H, but

in low volatile markets it is close to B&H mean values. Also the OBPI average performance if

not better than CPPI 1 when η = 15%. Finally, the SLPI mean values are very similar to the

OBPI, with exception of some cases of σ = 40%, but the two strategies are different in respect to

path-dependency.

For higher moments, we consider only the path-dependent strategies, CPPI 3 and 5. CPPI 1

and OBPI are obviously left aside because of their degeneracy. SLPI is also path-dependent, but

in a different manner, because it has only two possible outcomes: BT or ST , whichever is the

highest at maturity. This means that we do not need the higher order moments to interpret the

characteristics of this strategy. All the information is on the probabilities of the two outcomes

which are depicted in Table 2. Yet, we still deliver some observations about the skewness and

kurtosis of SLPI.

From Table 3 it is very clear that with higher volatility of the risky asset, the standard deviations

of the CPPI 3 and CPPI 5 decrease, which may lead to the false interpretation these strategies are

“safe”. In fact, what these numbers translate is the fact that for high volatility of the risky assets,

CPPI 3 and 5 end up very often cash-locked. Similarly, the higher the floor (higher η) the lower

the strategies volatility as the probability of cash-lock events increase. We note that both strategies

suffer a decrease in the standard deviation for longer maturities which is enhanced by higher

volatilities corroborating the idea that those conditions imply almost sure cash-lock occurrences.

We must also emphasise the fact that higher multipliers amplify the negative effect of longer

maturities. Finally, for ST = 100 we see that the SLPI distribution is obviously degenerate with
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Table 1: Mean of the PI payoff distributions. V0 = 100

Η � 100�

Σ � 15� Σ � 40�

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 118.1 108.7 102.6 100.0 100.0 118.1 101.1 100.0 100.0 100.0

150 127.2 129.3 120.1 139.7 139.1 127.2 103.7 100.0 100.0 110.6

T�5 200 136.3 169.4 184.8 186.3 192.4 136.3 108.7 100.1 131.5 132.8

250 145.3 235.4 358.4 232.8 245.4 145.3 117.1 100.2 164.3 161.4

300 154.4 333.7 741.6 279.4 296.9 154.4 129.6 100.6 197.2 193.6

100 145.1 104.9 100.1 100.0 100.0 145.1 100.0 100.0 100.0 100.0

150 167.7 116.6 101.0 144.5 138.7 167.7 100.0 100.0 108.9 109.9

T�15 200 190.2 139.5 104.4 192.7 192.1 190.2 100.1 100.0 145.2 130.6

250 212.8 177.2 113.6 240.9 244.5 212.8 100.1 100.0 181.5 157.2

300 235.4 233.4 133.9 289.1 296.5 235.4 100.3 100.0 217.8 187.1

Η � 80�

Σ � 15� Σ � 40�

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 114.5 96.49 84.99 98.56 96.64 114.5 82.04 80.00 82.06 84.83

150 131.8 135.7 118.2 147.8 149.5 131.8 86.97 80.03 123.1 116.2

T�5 200 149.0 212.0 241.3 197.1 199.9 149.0 96.61 80.14 164.1 158.2

250 166.3 337.7 571.9 246.4 250.0 166.3 112.6 80.43 205.1 203.5

300 183.5 524.8 1301. 295.7 300.0 183.5 136.4 81.10 246.2 250.3

100 136.1 86.12 80.17 98.62 93.58 136.1 80.01 80.00 81.41 83.11

150 164.1 100.7 81.30 147.9 147.0 164.1 80.04 80.00 122.1 105.6

T�15 200 192.2 129.1 85.51 197.2 198.8 192.2 80.09 80.00 162.8 137.9

250 220.2 175.9 96.88 246.5 249.6 220.2 80.19 80.00 203.5 174.6

300 248.3 245.8 122.1 295.9 299.8 248.3 80.32 80.00 244.2 213.7

only one possible outcome 100 because the final floor value coincides with ST .

The skewness of a distribution measures its asymmetry with respect to the mean. Specifically, a

negative or left-skewed distribution has a longer left tail whereas a distribution with a broader right

tail has positive or right skewness. Hence zero-skewed strategies are symmetric. Investors tend

to favor positively skewed payoffs, so an analysis merely based on mean and variance measures

would overrate the strategies which reduce skewness. In Table 4 we can see that for CPPI 3 and

5, η does not influence skewness (not even kurtosis as can see ahead) but the increasing volatility

makes distributions more positive-skewed. In addition higher ST values give place to very small

decreases in skewness while longer T gives more positive skewness. For the SLPI skewness along

with the mean values show the bimodal aspect of the distribution. For σ = 15% it is always

Table 2: SLPI probabilities.

Η�100� Η�80�

Σ�15� Σ�40�

ST ST FT ST FT

100 1. 1. 1. 1.

150 0.7819 0.2181 0.211 0.789

T�5 200 0.9243 0.0757 0.3277 0.6723

250 0.969 0.031 0.4096 0.5904

300 0.9843 0.0157 0.468 0.532

100 1. 1. 1. 1.

150 0.7744 0.2256 0.1971 0.8029

T�15 200 0.9214 0.0786 0.3063 0.6937

250 0.9633 0.0367 0.3815 0.6185

300 0.9823 0.0177 0.4354 0.5646

Σ�15� Σ�40�

ST FT ST FT

0.8319 0.1681 0.2414 0.7586

0.9924 0.0076 0.5178 0.4822

0.9993 0.0007 0.6518 0.3482

0.9998 0.0002 0.7267 0.2733

0.9999 0.0001 0.7739 0.2261

0.679 0.321 0.1553 0.8447

0.9566 0.0434 0.3653 0.6347

0.9903 0.0097 0.4823 0.5177

0.9977 0.0023 0.5565 0.4435

0.9989 0.0011 0.6077 0.3923
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Table 3: Standard Deviation of the PI payoff distributions. V0 = 100

Η � 100�

Σ � 15� Σ � 40�

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 0 0.1854 0.1892 0 0 0 0.1684 0.001230 0 0

150 0 0.6242 1.438 0 20.65 0 0.5715 0.009846 0 20.40

T�5 200 0 1.475 6.039 0 26.45 0 1.358 0.04289 0 46.94

250 0 2.872 18.34 0 26.00 0 2.657 0.1340 0 73.77

300 0 4.948 45.38 0 24.86 0 4.595 0.3393 0 99.80

100 0 0.1816 0.01701 0 0 0 0.002558 1.388�10
�6

0 0

150 0 0.6135 0.1302 0 20.90 0 0.008712 6.225�10
�10

0 19.89

T�15 200 0 1.454 0.5510 0 26.91 0 0.02078 2.735�10
�9

0 46.10

250 0 2.840 1.686 0 28.21 0 0.04076 8.613�10
�9

0 72.87

300 0 4.906 4.201 0 26.37 0 0.07068 2.198�10
�8

0 99.17

Η � 80�

Σ � 15� Σ � 40�

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 0 0.3530 0.3601 0 7.479 0 0.3205 0.002341 0 8.559

150 0 1.188 2.737 0 6.080 0 1.088 0.01874 0 34.98

T�5 200 0 2.807 11.49 0 3.174 0 2.586 0.08164 0 57.17

250 0 5.466 34.91 0 2.404 0 5.058 0.2550 0 75.76

300 0 9.417 86.38 0 2.200 0 8.746 0.6457 0 92.03

100 0 0.2258 0.02114 0 9.338 0 0.003180 1.725�10
�6

0 7.244

150 0 0.7627 0.1619 0 14.26 0 0.01083 7.739�10
�10

0 33.71

T�15 200 0 1.808 0.6850 0 11.76 0 0.02583 3.400�10
�9

0 59.97

250 0 3.531 2.096 0 8.144 0 0.05068 1.071�10
�8

0 84.46

300 0 6.099 5.223 0 7.293 0 0.08788 2.732�10
�8

0 107.4

left skewed (with exception of ST = 100) because there were more VT = ST realisations than

VT = BT conferring an effective left tail to the distribution. For higher ST values the left-skewness

intensifies because there are less chances of triggering the stop-loss rule and therefore more weight

is given on the right bar.

The exact interpretation of tailedness and peakedness of a distribution function provided by the

kurtosis has been subject to wide discussion (and often confusion) over the past century (DeCarlo,

1997). Yet presently there is still room for presumptions that can give alternative measurements

of a distributions peak sharpness and tail fatness, because different shaped distributions with equal

kurtosis have been already found. However it is consensual that shape has to incorporate those two

aspects (peak and tails). Therefore the kurtosis measurement basically assumes that the shoulders

of a distribution are located at the mean plus (and minus) a standard deviation and scales the

fourth moment to its variance. Another common meaning used for kurtosis is the ‘departure from

normality”. Hence, normal/mesokurtic distributions have excess kurtosis γ2 = 0 (or 3 for kurto-

sis), γ2 > 0 correspond to leptokurtic curves, i.e., with sharp peak and fat tails, while platykurtic

shapes measure γ2 < 0, are flat at the peak and have short tails. This being said it can be observed

in Table 5 the same independence on η as in the skewness values. CPPI 3 and 5 are always lep-

tokurtic but almost normal for σ = 15% and CPPI 3 has still low positive kurtosis for σ = 45%.

However CPPI 5 bypasses positively the normal range for high σ = 45%, but even more heav-

ily when adding long maturities large γ2. For the SLPI strategy again kurtosis shows a different

behaviour. In general, for low ST the two possible outcome bars are more close and equitably

distributed hence decreasing the absolute value of skewness and kurtosis. Has ST rises, the left

bar stays fixed and the right bard increasingly detaches from the other as it gains more weight

simultaneously.



On path–dependency of CPPIs 24

Table 4: Skewness (third moment).

Η � 100�

Σ � 15� Σ � 40�

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 Ind �0.06993 0.08492 Ind Ind Ind 0.3413 1.797 Ind Ind

150 Ind �0.07020 0.08331 Ind �1.365 Ind 0.3393 1.777 Ind 1.417

T�5 200 Ind �0.07039 0.08217 Ind �3.208 Ind 0.3379 1.763 Ind 0.7342

250 Ind �0.07053 0.08129 Ind �5.412 Ind 0.3368 1.752 Ind 0.3677

300 Ind �0.07065 0.08058 Ind �7.792 Ind 0.3359 1.743 Ind 0.1283

100 Ind 0.04592 0.3100 Ind Ind Ind 0.7670 �99.98 Ind Ind

150 Ind 0.04577 0.3091 Ind �1.313 Ind 0.7657 4.696 Ind 1.523

T�15 200 Ind 0.04567 0.3084 Ind �3.132 Ind 0.7648 4.679 Ind 0.8404

250 Ind 0.04559 0.3079 Ind �4.928 Ind 0.7642 4.666 Ind 0.4879

300 Ind 0.04552 0.3075 Ind �7.315 Ind 0.7636 4.654 Ind 0.2606

Η � 80�

Σ � 15� Σ � 40�

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 Ind �0.06993 0.08492 Ind �1.775 Ind 0.3413 1.797 Ind 1.209

150 Ind �0.07020 0.08331 Ind �11.34 Ind 0.3393 1.777 Ind �0.07125

T�5 200 Ind �0.07039 0.08217 Ind �37.76 Ind 0.3379 1.763 Ind �0.6373

250 Ind �0.07053 0.08129 Ind �70.69 Ind 0.3368 1.752 Ind �1.017

300 Ind �0.07065 0.08058 Ind �99.98 Ind 0.3359 1.743 Ind �1.310

100 Ind 0.04592 0.3100 Ind �0.7668 Ind 0.7670 �99.98 Ind 1.903

150 Ind 0.04577 0.3091 Ind �4.482 Ind 0.7657 4.696 Ind 0.5595

T�15 200 Ind 0.04567 0.3084 Ind �10.01 Ind 0.7648 4.679 Ind 0.07084

250 Ind 0.04559 0.3079 Ind �20.78 Ind 0.7642 4.665 Ind �0.2275

300 Ind 0.04552 0.3075 Ind �30.10 Ind 0.7636 4.654 Ind �0.4412

Table 5: Excess Kurtosis (fourth moment −3).

Η � 100�

Σ � 15� Σ � 40�

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 Ind 0.06056 0.06018 Ind Ind Ind 0.2492 6.003 Ind Ind

150 Ind 0.06063 0.05974 Ind �0.1360 Ind 0.2468 5.866 Ind 0.006764

T�5 200 Ind 0.06069 0.05943 Ind 8.292 Ind 0.2451 5.771 Ind �1.461

250 Ind 0.06073 0.05920 Ind 27.29 Ind 0.2438 5.699 Ind �1.865

300 Ind 0.06076 0.05902 Ind 58.71 Ind 0.2428 5.641 Ind �1.984

100 Ind 0.02965 0.1870 Ind Ind Ind 1.073 9995. Ind Ind

150 Ind 0.02963 0.1859 Ind �0.2761 Ind 1.069 42.37 Ind 0.3191

T�15 200 Ind 0.02962 0.1852 Ind 7.808 Ind 1.067 42.06 Ind �1.294

250 Ind 0.02961 0.1847 Ind 22.29 Ind 1.065 41.82 Ind �1.762

300 Ind 0.02960 0.1842 Ind 51.52 Ind 1.063 41.63 Ind �1.932

Η � 80�

Σ � 15� Σ � 40�

ST CPPI1 CPPI3 CPPI5 OBPI SLPI CPPI1 CPPI3 CPPI5 OBPI SLPI

100 Ind 0.06056 0.06018 Ind 1.151 Ind 0.2492 6.003 Ind �0.5393

150 Ind 0.06063 0.05974 Ind 126.6 Ind 0.2468 5.866 Ind �1.995

T�5 200 Ind 0.06069 0.05943 Ind 1424. Ind 0.2451 5.771 Ind �1.594

250 Ind 0.06073 0.05920 Ind 4995. Ind 0.2438 5.699 Ind �0.9649

300 Ind 0.06076 0.05902 Ind 9995. Ind 0.2428 5.641 Ind �0.2850

100 Ind 0.02965 0.1870 Ind �1.412 Ind 1.073 9995. Ind 1.623

150 Ind 0.02963 0.1859 Ind 18.09 Ind 1.069 42.37 Ind �1.687

T�15 200 Ind 0.02962 0.1852 Ind 98.10 Ind 1.067 42.06 Ind �1.995

250 Ind 0.02961 0.1847 Ind 429.8 Ind 1.065 41.82 Ind �1.948

300 Ind 0.02960 0.1842 Ind 904.1 Ind 1.063 41.63 Ind �1.805
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4.2 Stochastic Dominance

Consider two random variables V1 and V2, and their respective cumulative distribution functions

(CDF), F1(x) and F2(x). Then, we say that V1 ith order stochastically dominates V2 if and only if

D
(i)
1 (x) ≤ D

(i)
2 (x) ∀x (with strict inequality for at least one x), where D

(i)
k =

∫ x
−∞D

(i−1)
k dx and

D
(1)
k = Fk(x) (Davidson and Duclos, 2000; Annaert et al., 2009). We denote V1 stochastically

dominates V2 on first (second and third) order by V1 FSD (respectively SSD, TSD) V2 (as in e.g.

Levy and Wiener (1998)). Therefore, if the CDF of the two strategies intersect or are equal, there

is no SD between them. The test is made in both directions because if V1 does not SD V2, it

does not mean that V2 SD V1. Contrarily, it is obvious that if V1 SD V2 we know the reverse

does not. Therefore this study organizes the stochastic dominance results so that no duplications

arise. In addition, successive narrowing of the class of utility functions contemplated on higher

order SD suggests that lower degree SD imply necessarily the SD on the subsequent orders, i.e.,

FSD⇒SSD⇒TSD.

Figure 14 illustrates an example of three orders of stochastic dominance in a scenario described

in the caption bellow. Tables 6 – 6 summarise the identified dominances. The observations on (F,

S and T)SD (see Tables (6, 7 and 8) correspondingly) are made separately but the higher the order,

the less observations since the rest are resumed in the lower order SD.

For first order SD, investors who are concerned simply with higher payoff, prefer always CPPI

1 to all other strategies for ST = 100 in every scenario and for (ST = 150, T = 15), confirming

the mean analysis. It also FSD CPPI 3 and 5 in all scenarios except for σ = 15%, (ST ≥ 150,

T = 5) and (ST = 300, T = 15). The choices of insurance percentage generally do not influence

CPPI 1’s dominance, existing only one exception, where the dominance over OBPI in (ST = 200,

σ = 40%, T = 5) and η = 100% is lost for η = 80%. CPPI 3 FSD all strategies except CPPI

1 for the lowest ST and η = 100% in all volatility and maturity cases. It also FSD CPPI 5 in

every scenario except for (ST ≥ 250, σ = 15%, T = 5) which are the only cases it dominates

CPPI 1. CPPI 5 FSD all strategies for (ST ≥ 250, σ = 15%, T = 5) for both floor choices.

Also dominates on first order OBPI and SLPI for ST = 100. OBPI dominates all strategies except

SLPI for most cases where ST ≥ 200 except when CPPI 3 and 5 dominate. For ST ≥ 150 it

also presents some dominance on low volatile markets. SLPI first order SD CPPI 3 and 5 for high

volatility markets and long maturity.

In respect to second order stochastic dominance, the investors who are risk averse would

choose CPPI 1 over SLPI in some cases of high volatile markets, such as for (ST = 150, T = 5)
and for (ST ≥ 200, T = 15) for both η. CPPI 1 also dominates CPPI 3 on second order for

(ST = 300, σ = 15%, T = 15) for both insurance percentages as well. OBPI dominates CPPI 3

only in two very different cases: (σ = 40%, T = 5) and (σ = 15%, T = 15) in both cases for

ST = 100 and η = 80%.

Concerning third order stochastic dominance, the investor whose risk aversion decreases with

growing wealth, chooses CPPI 1 over SLPI and OBPI in few cases of high volatility with long

maturity, or low volatility with short maturity, but both cases for ST = {200, 250}. CPPI 3 and 5

are also preferable to this investor than SLPI for some cases of low volatility and T = 5: the first

strategy for (ST = 150, η = 80%) and (ST = 100, η = 80%), and the second for (ST = 200,

η = 100%). Finally, OBPI also stochastically dominates on third order the SLPI strategy for

ST ≥ 150 and (σ = 15%, T = 15).
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Figure 14: First, second and third orders of stochastic dominances: (a) CDF, (b)
∫
CDF (c)∫ ∫

CDF . Scenario: {ST , σ, T, η} = {150, 15%, 5, 100%}
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Table 6: First order stochastic dominance.

Η � 100� , Σ � 15� , T � 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 cppi5 cppi5 None cppi1,cppi3,cppi5 None
200 None cppi1 cppi1 cppi1,cppi3 None
250 None cppi1 All cppi1 None
300 None cppi1,obpi,slpi All cppi1 None

Η � 100� , Σ � 40� , T � 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 cppi3,cppi5,obpi cppi5,obpi obpi None cppi5,obpi
200 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi5
250 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 cppi5
300 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None

Η � 100� , Σ � 15� , T � 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5 None cppi3,cppi5 None
200 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None
250 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None
300 cppi5 cppi5 None cppi1,cppi3,cppi5 None

Η � 100� , Σ � 40� , T � 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5 None cppi3,cppi5 cppi3,cppi5
200 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi3,cppi5
250 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi3,cppi5
300 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi3,cppi5

Η � 80� , Σ � 15� , T � 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5 None
150 cppi5 cppi5 None cppi1,cppi3,cppi5 None
200 None cppi1,obpi,slpi cppi1,obpi,slpi cppi1 None
250 None cppi1,obpi,slpi All cppi1 None
300 None cppi1,obpi,slpi All cppi1 None

Η � 80� , Σ � 40� , T � 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi5 cppi5
150 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi5
200 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 cppi5
250 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 cppi5
300 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None

Η � 80� , Σ � 15� , T � 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5 cppi5
150 All cppi5 None cppi3,cppi5 None
200 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None
250 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None
300 cppi5 cppi5 None cppi1,cppi3,cppi5 None

Η � 80� , Σ � 40� , T � 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5 cppi3,cppi5
150 All cppi5 None cppi3,cppi5 cppi3,cppi5
200 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi3,cppi5
250 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi3,cppi5
300 cppi3,cppi5,obpi cppi5 None cppi3,cppi5 cppi3,cppi5
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Table 7: Second order stochastic dominance.

Η � 100� , Σ � 15� , T � 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 cppi5 cppi5 None All None
200 None cppi1 cppi1 cppi1,cppi3,cppi5 None
250 None cppi1 All cppi1 None
300 None cppi1,obpi,slpi All cppi1 None

Η � 100� , Σ � 40� , T � 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5,obpi obpi None cppi5,obpi
200 All cppi5 None cppi3,cppi5 cppi5
250 cppi3,cppi5 cppi5 None All cppi5
300 cppi3,cppi5 cppi5 None All None

Η � 100� , Σ � 15� , T � 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5 None cppi3,cppi5,slpi None
200 cppi3,cppi5 cppi5 None All None
250 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None
300 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None

Η � 100� , Σ � 40� , T � 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5 None cppi3,cppi5 cppi3,cppi5
200 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
250 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
300 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5

Η � 80� , Σ � 15� , T � 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5,slpi None
150 cppi5 cppi5 None cppi1,cppi3,cppi5 None
200 None cppi1,obpi,slpi cppi1,obpi,slpi cppi1 None
250 None cppi1,obpi,slpi All cppi1 None
300 None cppi1,obpi,slpi All cppi1 None

Η � 80� , Σ � 40� , T � 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5 cppi5
150 All cppi5 None cppi3,cppi5,slpi cppi5
200 cppi3,cppi5 cppi5 None All cppi5
250 cppi3,cppi5 cppi5 None All cppi5
300 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None

Η � 80� , Σ � 15� , T � 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5,slpi cppi5
150 All cppi5 None cppi3,cppi5,slpi None
200 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None
250 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None
300 cppi3,cppi5 cppi5 None cppi1,cppi3,cppi5 None

Η � 80� , Σ � 40� , T � 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5 cppi3,cppi5
150 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
200 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
250 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
300 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
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Table 8: Third order stochastic dominance.

Η � 100� , Σ � 15� , T � 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 cppi5 cppi5,slpi None All None
200 None cppi1 cppi1,slpi All None
250 None cppi1 All cppi1 None
300 None cppi1,obpi,slpi All cppi1 None

Η � 100� , Σ � 40� , T � 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5,obpi obpi None cppi5,obpi
200 All cppi5 None cppi3,cppi5,slpi cppi5
250 cppi3,cppi5,slpi cppi5 None All cppi5
300 cppi3,cppi5 cppi5 None All None

Η � 100� , Σ � 15� , T � 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5 None cppi3,cppi5,slpi None
200 cppi3,cppi5,slpi cppi5 None All None
250 cppi3,cppi5 cppi5 None All None
300 cppi3,cppi5 cppi5 None All None

Η � 100� , Σ � 40� , T � 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,obpi,slpi obpi,slpi slpi None
150 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
200 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
250 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
300 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5

Η � 80� , Σ � 15� , T � 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5,slpi None cppi3,cppi5,slpi None
150 cppi5 cppi5 None All None
200 None cppi1,obpi,slpi cppi1,obpi,slpi cppi1 None
250 None cppi1,obpi,slpi All cppi1 None
300 None cppi1,obpi,slpi All cppi1 None

Η � 80� , Σ � 40� , T � 5
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5 cppi5
150 All cppi5 None cppi3,cppi5,slpi cppi5
200 cppi3,cppi5,slpi cppi5 None All cppi5
250 cppi3,cppi5,slpi cppi5 None All cppi5
300 cppi3,cppi5 cppi5 None All None

Η � 80� , Σ � 15� , T � 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5,slpi cppi5
150 All cppi5 None cppi3,cppi5,slpi None
200 cppi3,cppi5,slpi cppi5 None All None
250 cppi3,cppi5 cppi5 None All None
300 cppi3,cppi5 cppi5 None All None

Η � 80� , Σ � 40� , T � 15
ST CPPI1 CPPI3 CPPI5 OBPI SLPI

100 All cppi5 None cppi3,cppi5 cppi3,cppi5
150 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
200 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
250 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
300 All cppi5 None cppi3,cppi5,slpi cppi3,cppi5
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4.3 Discussion of Main Results

We now come to the selection and discussion of the most important results presented above. Our

results allow us to make some important conclusions about the path-(in)dependent behaviour of

each studied PI. Taking into consideration the setup for simulations which was carried out in this

study, we must always bear in mind that the simulations highlight the path-dependent behaviour

of CPPI 3, 5 and SLPI in contrast with the path-independency of the CPPI 1 and OBPI outcomes.

For this reason, we separate the analysis making the comparison between the path-dependent

strategies - CPPI 3 and 5 - and the path-independent strategies - CPPI 1 and OBPI. We must note

that despite SLPI also being a path-dependent strategy, it is only so because of the two possible

outcomes it can assume. Therefore, its distribution is very different than the distributions of the

other path-dependent strategies. In this regard, we treat SLPI separately, because in some cases

it can almost be path-independent, i.e., have one only possible outcome. Another consequence

of simulating conditioned ST , is that this study focuses only on high trend markets, because for

negative returns, PI strategies return a value equal or insignificantly greater than the guarantee. In

other words, taking the investors perspective, if we know that a stock will fall, we invest in a bond,

a saving account, or simply do nothing. We are concerned to find in which cases cash-lock events

occur for the CPPI 3 and 5, and which PI perform better under large positive market trends, i.e.,

assess to which extent these strategies really potentiate upside performance.

4.3.1 Path-Dependent Strategies and Cash-Lock

The first issue we address is that path-dependent strategies exhibit high cash-lock occurrences.

For example, on a 40% volatility market and maturity of 15 years, we can see that for every

ST value, the payoffs of the path-dependent strategies end up cash-locked almost 100% of the

simulations. This can be observed by the mean almost coinciding with the floor value, at the

same time that the standard deviation ranges from values of the order of 10−3 to 10−2 for the

CPPI 3, and from 10−6 to 10−10 for the CPPI 5. In these cases the low values of skewness and

kurtosis for the CPPI 3 indicate us the non-existence of significant outliers and thus, almost no

exceptions. Despite the high leptokurtic shape of CPPI 5, cash-lock events are even more frequent

given the extremely low standard deviations. The reason for such frequency of cash-lock events

is because a longer maturity is equivalent to a longer path which ceteris paribus amplifies path-

dependency. But mostly, it is due to the high volatility, which increases the probability of larger

drops in the underlying risky asset. Still looking at σ = 40%, we see that even for a 5year-maturity

investment, the path-dependent strategies do not escape a large set of cash-lock events. This can

also be observed by the mean values - also near the floor - and standard deviations ranging from

orders of 10−1 to 10 for the CPPI 3 and 10−3 to 10−1 for the CPPI 5. The only scenario where the

path-dependent strategies perform better than the others, is for the combination of low volatility,

short maturity and high returns of the risky asset: ST > 200 with a guarantee floor of 100%,

where the inequality loses its strictness for η = 80%.

The SLPI is a rather peculiar strategy under the present framework’s perspective. This strategy

resumes to a two outcome lottery: either one receives the insured amount, or wins the risky asset

as if it has been fully invested on it. The obtained probabilities of each outcome and a comparison

with the other PI mean values, tell us that SLPI is probably the best choice in 6 cases, all of

which with low volatility: for long maturity - 80% guarantee and ST ≥ 200 ; 100% guarantee and

ST ≥ 250 - and for short maturity - 100% guarantee and ST = 200. We carefully use the word

probably because it is not clear for instance that an investor will prefer a SLPI which has 98.23%
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probability of returning 300 with the remaining 1.77% chance of returning 100, as opposed to the

OBPI strategy whose only possible outcome is 289.1%. This situation refers to the scenario of

T = 15, σ = 15%, ST = 300 and η = 100%.

4.3.2 Path-Independent Strategies

The study of the path-independent strategies is more direct in the present context. In general,

the obtained moments show that the path-independent strategies are better suited for high volatile

markets and longer maturities, regardless of the risky asset’s payoffs. This is because they have

less probability of being exaggeratedly invested on the risk-free asset. In particular, the CPPI 1

is better for moderate market increases and outperforms OBPI for a few cases of high volatility

and long maturity. Conversely, the OBPI is a better choice than CPPI in some low volatile market

scenarios.

4.3.3 Stochastic Dominance

So far we have identified in which scenarios path-dependent strategies are preferable than path-

independent, and vice-versa on the perspective of the analysis of moments. However, in many

cases, it is unclear only by the descriptive statistical analysis to grasp such conclusions. There-

fore, we used stochastic dominance tests which take into account the whole cumulative distribution

of the payoffs at maturity of two different strategies and provide an answer to whether an investor

choses between those two strategies. Nevertheless, we see that the results of the stochastic dom-

inant test confirm all the conclusions made with the analysis of moments. These results show

in fact that investors who are simply interested in the higher payoffs, choose both CPPI 1 and

OBPI over CPPI 3 and 5 strategies in almost all scenarios of high volatility. The same conclusions

were also obtained for the dominance of the path-dependent strategies, which occurs only in low

volatile markets, and short maturities. The SLPI exhibits dominance over CPPI 3 and 5 only on the

combination of high volatility and long maturity. Between equally path-independent strategies, it

becomes more clear with SD that in general CPPI 1 is chosen over OBPI for high volatile mar-

kets and longer maturities, while the opposite is observed for short maturity investments and low

volatility. In addition, both dominate each other in different situations, CPPI 1 mainly for choices

of η = 100% and OBPI for η = 80%. As there have been many cases found of first order SD,

few exceptions emerged for investors who can be both risk averse and decreasingly risk averse

(second order SD), or for investors who have only the latter risk profile (third order). However,

almost every second and third order of SD happen over SLPI.

5 Conclusion and Further Research

This study addresses an important issue concerning the path-dependency CPPI strategies which

is extremely undesirable for investors and has not yet received an empirical study. This path de-

pendency is directly related to the allocation mechanism of CPPIs and the fact that they often get

cash-locked. This occurs because CPPIs tend to become excessively invested in the risk-free asset,

which transgresses a fundamental purpose of PI: allow participation in upside performance of the

risky asset. Hence the question that arises is: When and how often do these cash-lock events hap-
pen?, which leads necessarily to an even more important question: Taking into consideration the
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cash-lock issue, which PI should an investor choose?. In this work we provide an answer to both

questions and emphasise the negative impact of this path-dependent behaviour on PI performance.

To answer the aforementioned questions, we begin by acknowledging that if we simulate

risky asset paths all conditioned to the same final value, we obtain a single outcome for a path-

independent strategy, while a path-dependent gives rise to a distribution. Hence, the difference

between both types of strategies is highlighted with this approach, which is not encountered in

previous studies on this subject. To achieve this, we assumed the risky asset follows a geometric

Brownian motion which is a Gaussian process and can thus be simulated and conditioned to a

fixed final value using Gaussian Processes for Machine Learning regression.

The main finding of this paper is that, in fact, cash-lock occurrences on the path-dependent

CPPI 3 and 5 strategies happen very often and prohibit upside participation, even in cases where

the risky asset triples at maturity. This is particularly patent on high volatile markets and for long

maturities which is where the path-dependencies have more presence. Hence, under such market

scenarios this undesirable risk makes the path-dependent strategies less attractive than the path-

independent CPPI 1 and OBPI strategies. This conclusion is in consonance with previous studies

and is corroborated with our analysis of the moments and stochastic dominance. However, the Buy

and Hold strategy still remains a better choice for higher returns of the risky asset. Furthermore, in

cases where volatility is low, the SLPI is almost identical to the Buy and Hold strategy. However,

SLPI is more dependent on the risk profile of an investor and the stochastic dominance tests were

not conclusive.

We conclude this paper with our goal achieved: to answer the questions posed above, present-

ing a different approach for the analysis of PI strategies. We also hope it contributes as a warning

for investors who think of investing in CPPIs , which still need much improvement in the design

process so that cash-lock risk is reduced.

We believe this topic alone has much more to be studied and discussed. In particular, there are

other sources of path-dependency that can be introduced, e.g., borrowing constraints or different

trading schedules. Such aspects can increase the cash-lock risk.
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