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Abstract. The article models process of decision making on selection of investment projects in circumstances of multicriteriality and fuzziness.  Based on that, exercises on assessment and selection of a group of investment projects are formulated and solved meeting requirements on various criteria of efficiency, while accounting for impact of different technical, technological, economic, financial, organizational, political and other factors.
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Introduction
Decision making on selection of investment project is one of the necessary stages of project analysis. At this stage, a multiplicity of investment projects, various interlinkages and characteristics are analyzed usually. In a general case, when there are a number of variations of a single project or a number of closely linked investment projects to assess, then it is necessary to consider all alternative options of realization of a given project or a pool of projects at the time of selection.

The analysis of a group of investment projects and selection of the best one among those as well as ranking by attractiveness is carried out through a complex use of criteria of efficiency of investments.
Decision making on selection of investment projects cannot be realized just through the use of one criterium only. Indeed, a character, purpose and requirements of each investment project are different, while the actual process is accompanied with uncertainty in most cases. In this case, no single criterium in isolation cannot provide sufficient information, based on which a decision can be made on the attractiveness of the project. It is possible only after analysis of the entire complex of criteria of efficiency of investments.

As such, the most important and challenging task is to select the most priority investment projects as well as rank the projects by priority accounting for a multiplicity of factors with impact in the circumstances of multicriteriality. 
1. Analysis of interlinkages and relations of criteria of efficiency of investments 

A very interesting picture emerges from the analysis of criteria of efficiency of investments, such as the most of the criteria proposed lead to one or two same decision on accepting or rejecting the investment project.

As we know:

· if NPV > 0, then simultaneously IRR > CC and PI > 1;

· if NPV < 0, then simultaneously IRR < CC and PI <1;

· if NPV = 0 , then simultaneously IRR = CC and PI=1.

Despite these existing obvious interlinkages among criteria, matching NPV, PI, IRR,… of various projects lead to different results (Table.1) [  ]. It can be seen from Table 1 that it is not always possible to make a unique conclusion about the advantage of any particular project. In such situation, the problem is to identify which criterium is to be given a priority since selection will vary depending on accepted criteria.
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	NPV
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	PI
	PP
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In the process of making decision on a choice of investment project, it is necessary to identify important distinctions among criteria. Indeed, investment options in Table 1 are mutually exclusive and only one can be selected among these.
Studies carried out by specialists [  ] in the area of project analysis revealed that the criteria of NPV and IRR are the most suitable for investment-type decision making. In making decisions one can be guided by the following aspects:

In the case of accepting the project, NPV gives a probable assessment of firm's capital growth, which reflects the increase in economic potential of the firm, while a feature of additivity enables summing up NPV indicator for different projects, hence such use of this indicator for optimization of investment portfolio is most natural.

Meanwhile estimations of IRR for growth indicators of capital investments and revenues demonstrate that if IRR>I0, then growth expenditures are well justified and a priority is given to projects with large capital investments.
Therefore, in the process of making decision on selection of investment project IRR criterium can be used rather conditionally. Thus, a final choice can be made only through use of other criteria.

IRR criterium shown just a maximum level of expenditures that can be associated with the assessed project, and does not allow to distinguish situations when price of capital changes.

On the other hand, discrepancies between indicators of NPV and IRR depend on the rate of refinancing of the funds obtained from realization of these projects. As shown in the analysis of characteristics of IRR in [  ], in estimating internal rate of return, funds are re-invested at a rate equal to IRR for the remaining period of project exploitation. However, according to a method of net present value, reinvestment is carried out at a rate equal to minimum rate of profitability.

Schematically, these are illustrated in Picture 1 [  ].
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Picture 1.
A point at which two lines cross showing the value of a discount coefficient, where both projects have a same NPV, is called a Fischer point:
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This point represents a rate of intersection of investment projects.  It is noteworthy as it serves as a frontier dividing situations that are compatible with NPV from those that are incompatible with IRR. At a rate of reinvestment equal to rAB, both projects will have the same NPV. At a rate of reinvestment different from rAB, the preference is given to a project based on the magnitude of NPV. Similarly, it is possible to assess projects through a coupled comparison of NPV values based on points of intersection. Here, it is obvious that IRR cannot reflect differences between projects, on the contrary, NPV indicators allow to place pririties in most of the cases quite easily.

Summing up all afore-said, we can conclude that:

· Each investment project is characterized by a set of indicators (criteria) of efficiency, based on which the project is assessed;

· Each such criteria can be referred to as the following two types:

Type 1: This is a criterium, according to which, the greater is its corresponding indicator (for example, profitability), the better is the project.

Type 2: This is a criterium, according to which, the lower is its corresponding indicator (for example, period to cost recovery), the better is the project.

Note that such delineation of types is purely conditional, since each of these types can be reclassified into another type by reversing the sign of the corresponding indicator.

· Crietira may have same or different degree of importance (equilibrium or nonequilibrium criteria respectively.

To add to everything mentioned above, apart from criteria of efficiency discussed before, there are (or there may be introduced) other criteria of efficiency as well as criteria of various kinds of risks, criteria of social, political, ecological and other characters. Since dominating majority of selection methods do not account for characters of criteria, we, too, will abstract given criteria in consequent selection methods without delving into the essence of those.

It is necessary to note that very often, some (or all) criteria, based on which the projects are assessed, are such that it is impossible to identify an accurate quantitative assessment through these criteria (e.g. criteria related to social, political and other factors. In such cases, as a rule, the assessment of projects are done through expert judgments (assessment by qualitative indicators) defined by different methods.

2. Preferences, optimality in project selection 

Assume there are a multiplicity of alternative projects 
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 and a multiplicity of criteria 
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, based on which each project is assessed. Without diminishing the integrity of judgments, let us assume that all criteria 
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 refer to one of the types, namely to type one for simplicity purposes. The task is to describe the preferences of the person making decision – an investor (LPR) and to select the best (the most optimal) project from a multiplicity of 
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, in this context.
Hence, decision making on the choice of optimal project consists of two stages:

1. Description of what understanding the investor (LPR) will use to make his/her preference of a project over other projects, and  on that basis, definition of a term of an optimal choice (of project or group of projects);
2. Development of a mechanism (method) of a selection of an optimal project (or group, sub-multiplicity of projects).

There is an entire pool of various methods and rules for implementing each one of these stages [  ]. Before delving into description of the most widely known methods of selection of optimal project, let us consider some necessary definitions and terms.

Preferential relationships. First stage of decision making on the choice is carried out, as a rule, through various techniques of preferential relationship of domination. Binary relationships are sufficiently general and well developed ones.

Definition 1. Binary relationship 
[image: image13.wmf]b

 in a multiplicity 
[image: image14.wmf]P

 is a sub-multiplicity of a multiplicity 
[image: image15.wmf]P

P

P

´

=

2

, i.e. a multiplicity of ordered pairs 
[image: image16.wmf])

,

(

j

i

P

P

, where 
[image: image17.wmf]P

P

P

j

i

Î

,

.  If 
[image: image18.wmf]b

Î

)

,

(

j

i

P

P

, then it is said that 
[image: image19.wmf]i

P

 and 
[image: image20.wmf]j

P

 are in binary relationship to 
[image: image21.wmf]b

 (or simply related to 
[image: image22.wmf]b

) and is denoted as 
[image: image23.wmf]j

i

P

P

b

.

Binary relationships can be subject to theoretical multiplicity operations, such as union 
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i.e. a pair 
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Definition 2. Two projects 
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Definition 3. Binary relationship 
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· Asymmetric, if 
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· Anti-symmetric, if from 
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· Full (or connected) with respect to 
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· Partial (or disconnected), if it is not full, i.e. there is at least one incomparable pair in the multiplicity 
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· Equivalent, if it is reflective, symmetric and transitive.

Binary relationship 
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 can be interpreted as a matrix 
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or as oriented graph [37] with multiplicity of vertices 
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The necessity of considering binary relationships is due to the fact that understanding of optimality by a person making decision is described by some binary relationship on a multiplicity of alternative projects. Based on more or less plausible explanations, we can point to a couple of projects, where one project is better than another according to his/her viewpoint. Based on obtained binary relationship, all projects can be identified from a multiplicity of projects Р that are optimal (best) from the LPR's viewpoint, while the the number of choices in that case will depend on the binary relationship defined.

Widely used binary relationships describing the preferences of LPR-investor are divided into three groups:

· Relationships of strict preference 
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· Relationships of indifference 
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· Relationships of weak (lax) preference 
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Formal relationships 
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It means that sub-multiplicity of projects identified by relationship 
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It is useful to bear in mind that binary relationships of preference must always have the following features:

· Relationships 
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 are asymmetric and, hence, irreflective.

· Relationships 
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· Relationships 
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· In a general case, all three relationships are not transitive, but if 
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Meeting of all of these requirements is reflected on the definition of a term optimal solution of selection task and on the method of selection according to these relationships.

Optimality with respect to preference. Next stage of decision making on a choice of projects is identification of the optimal (best) project.

Let some weak relationship of preference 
[image: image87.emf]Bk









b

WK

 be defined in the multiplicity 
[image: image88.wmf]P

.

Definition 4. Project 
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Generally speaking, weak relationship of preference 
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Definition 5. Project 
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It can be easily noticed that the best (most optimal) project in 
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 is the one that is also maximal. The reverse is not true. More formally, if we denote multiplicity of optimal projects as 
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Here, it is necessary to note one thing. Sometimes, instead of a problem of identifying some optimal project, a problem of ordering (ranking) projects by a given preference is considered. For such exercises, a term maximal project loses its meaning. For instance, if 
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 best projects are to be selected from ordered multiplicity of 
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Selection function. Third stage of making of (optimal) decision is carrie dout through selection function defined by LPR (investor), which reflects the understanding of LPR about optimality of decision made and allows to select from a multiplicity of projects 
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 the best (the most optimal) with respect to preference.

Definition 5. Selection function from multiplicity 
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Note that in a classic definition selection function is given as a reflection of:
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where 
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It is clear from this definition that selection function is given fully by a binary relationship of preference 
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Pareto selection function. Binary relationship of Pareto preference 
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while Pareto selection function is:
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i.e. a selection is made in favor of projects only and only prevailing others at least on one criteria.

It is easy to see that a function 
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 selects sub-multiplicity of projects (Paretor multiplicity) that contains all maximal, hence, optimal projects with respect to 
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The drawback of Pareto selection is that a sub-multiplicity of selected projects may contain too many elements. There may be situations when this sub-multiplicity overlaps with multiplicity 
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 itself. Neverteheless, a term Pareto – multiplicity plays a fundamental role in multi-criteria optimization for many reasons. First of all, in most practical problems, Pareto – multiplicity is much more narrow than an original multiplicity 
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 allows to develop various algorithms – modifications of Pareto method. Thirdly, this term is quite important also for problems of making a group decision in most of the aximoatic systems and many modern human-machine systems, etc..

There are numerous modifications of Pareto method, which any way narrow down multiplicity of Pareto optimal decisions, but all these modifications are effective only in some specific situations, and in general, may have the same result as a standard method.
Majoritarian selection function. Majoritarian relationship of preference also gives rise to numerous selection functions. This relationship is defined as follows:
Let us identify for each criteria 
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where a sign 
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where 
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Hence, function 
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 selects a project that is more preferrable accross all criteria. Regarding binary relationship 
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· These are relationships of strict preference. If we replace in (9) strict relationship > to weak one, 
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· As was mentioned above, majoritarian relationship (weak or strict) is the basis of numerous selection rules: rule of absolute dominance, Board rule, Condorse rule, etc..

· It can be easily seen that 
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, and, hence, one of the methods of narrowing down Pareto-multiplicity is to apply a method of majoritarian selection.
Selection function on ideal project. In some cases, investor may offer a project 
[image: image158.wmf])

(

id

P

, a quantitative parameters of which he or she considers as ideal (desirable, satisfactory, in fact, a project 
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 may be understood variously. For instance, it may be understood as points in 
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 dimensional vector space and introduce a term of proximity of projects through Euclidian distance between two points.

Obviously, in doing so, economic meaning of indicators 
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, which, as a rule, are measured in different units (for instance, profitability and risk), is ignored. Nevertheless, use of these indicators as nameless measures gives desirable results, even if it fails to bring all indicators to a common unit of measurement through corresponding clotting coefficients:
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or through Hemming distance:
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or though any other means.

Binary relationship of preference 
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or as

[image: image171.wmf])

(

)

(

)

(

2

,

(

)

,

(

id

j

id

i

j

id

i

P

P

P

P

P

P

c

c

b

<

Û

 ,                                                             (14)
corresponding selection functions would be:
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Since Hemming distance 
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 is no less than Euclidean distance 
[image: image175.wmf]r
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 are transitive, irreflective, anti-symmetric, i.e. strict relationships of preference. If we replace the sign > in their definition with a sign 
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Another approach is to define values of 
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Obviously, in doing so, economic meaning of indicators that vary in different units is ignored. Sometimes, such different indicators can be brought to common unit of measure (for instance, monetary) through respective clotting coefficients, and that is why in formulas (11) - (12) there may be clotting coefficients in the values of indicators 
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. However, even if such clotting of indicators cannot be done, then applying (11) - (12) would lead to a desirable result.

Note that binary relationships we considered are typical representatives of relationship classes that are prinsipally different from one another, and on the basis of which one can identify numerous selection functions. Key reason of such abundance of selection methods is the fact that in all of these methods there is some degree of subjectivity, which leads to each one of such selection functions bearing some drawbacks along with possessing advantages. 
3. Methods of decision making in assessment and selection of a project in circumstances of multicriteriality 
All afore-mentioned criteria are necessary conditions of project selection, although in making investment decisions, they are not enough as criteria usually have different degrees of importance, which may change under the influence of some factors. Therefore, it is extremely difficult to solve an aggregated problem that would allow to assess priority of projects in the population of possible multiplicities satisfying above-mentioned factors as well as accounting for requirements and degree of importance of existing criteria of project evaluation in circumstances of uncertainty, risk and fuzziness of sitautions. 
For comprehensive solution of this problem, it is necessary to develop an approach allowing to define priority projects through ranking criteria, degree of importance of which change depending on various factors determined by status of project realization. 

3.1. Assessment of impact of factors on importance of selection of criteria and projects 
Let us consider a problem of selection of investment project in a situation when for various reasons of social, economic, political, ecological, geological, exploratory, etc. character, it is impossible to accurately evaluate projects quantitatively based on given criteria. Moreover, in such situations, degrees of importance of these criteria turn out to be inaccurate terms as well. A traditional approach to solution of selection problem in such situations is that LPR (or a group of experts) set forth fuzzy relationships among projects of the following types using paired comparisons:

· “By criterium 
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” and so on, and fuzzy relationships among criteria of type …;

· ”Criterium 
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 is more important than criterium 
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· “Criterium 
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 is much more important than criterium 
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” and so on.

In the most general case, each of these criteria may depend on a pool of factors influencing their degrees of importance. Fuzzy relationships of considered types are usually reflected in the multiplicity of true numbers (namley, in the multiplicity or sub-multiplicity of integers), called a grading scale. In many methods of paired comparisons Saati scale [  ] is used as a grading scale, by which fuzzy relationships of type «identical», «better», «more important», etc. are evaluated based on the following table (for brevity, assessment of relationships among projects and among criteria are unified into one table).

                                                                                         Table 2

Grading scale                                      
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	For intermediary judgments of LPR
	2,4,6,8


In addition, to ensure compatibility among judgments of LPR (or a group of experts) ratio values of a distance [1/9, 9] are used. The result of assessment of paired fuzzy relationships is a matrix of relationships that sometimes is called a matrix of comparisons having a feature of reverse-symmetry, i.e. if 
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if, in addition, for all 
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then such matrix is called fully compatible (or ideal).  Thus, ideal (compatible) matrix reflects compatibility (consistency) of LPR's (or a group of experts') judgments on criteria or on projects.

Let us note some of the important features of ideal (compatible) matrix 
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· 
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 is called ideal matrix only and only when its maximal eigenvalue is 
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[image: image242.wmf]nA

A

=

2

.
· Eigenvector conforming to 
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 of matrix 
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, is a ranking (ordering) vector for those terms (projects, criteria, etc.) which matrix 
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 refers to.

All listed features of ideal matrix enable simplification of solution to many problems related to such matrix. For instance, it is derived from feature 5 that for any vector 
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, vector 
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 is an eigenvector of ideal matrix 
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However, the same cannot be said about non-ideal matrices, even if they are reverse-symmetrical. Taking into account the fact that in almost all practical exercises matrices of paired comparisons are not ideal, then a problem of finding 
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 and a corresponding to it eigenvector gains in importance. 
Known approximate methods of finding eigenvalues and corresponding eigenvectors (such as Krylov's method, Danilevsky method, etc.) are related to certain difficulty of calculations. Therefore, one has to search for simpler methods of defining eigenvectors corresponding to 
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 of non-ideal matrices. 
One approach to solve this problem is to search for approximate eigenvectors for non-ideal matrices among eigenvectors for ideal matrices. In doing so, selected eigenvectors will have more accurate (in terms of ranking) result, the more «deviation» of matrix of comparison from ideal one. Such deviation is expressed by a measure of 
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, called compatibility index of matrix 
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: the lower is the value of 
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, the closer to reality result the selected eigenvector delivers.

Based on above-mentioned, we can propose following methods of selection of eigenvectors  for non-ideal matrix of comparisons (here we do not distinguish raw vector and column vector:
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Regarding these vectors, we can state the following:

· Each one of propsoed vectors are normalized;

· Each one of proposed vectors are eigenvectors of ideal matrix, i.e. when 
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 is ideal;

· In small values of compatibility index 
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, these vectors give quite approximate rankings, as eigenvalues and eigenvectros are continuous functions of their matrices [     ]. However, with increasing value of 
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, results may be different and for sufficiently larger values of 
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, different methods of finding eigenvectors or other methods of rankings unrelated to finding eigenvalues and eigenvectors must be applied.

In spite of these and other disadvantages, reverse-symmetrical matrices are widely used in problems of ranking various research objects, such as projects, criteria and factors influencing criteria or selection of projects. Meanwhile, it is possible to apply a methodology described above to solution of a problem of ranking various objects, which is comprised of the following main stages:

· Selection conforming to grading scale and assessment of linguistic (fuzzy) relationships among objects based on selected scale;

· Building a matrix of comparative asessments (matrix of paired comparisons);

· Finding eigenvectors conforming to maximal eigenvalue of matrix of comparison.

Thus, the approach described above allows to shift from fuzzy linguistic relationships to accurate numeric assessment of objects. Thereafter, these numeric assessments may be used differently depending on a problem set forth and its method of solution. Let us consider some typical problems encountered in multi-criterial selection of projects.

Identifying degrees of importance of criteria. As mentioned above, criteria, by which projects are evaluated, as a rule, have various degrees of importance that are assessed by investors through such linguistic relationships as «equally important», more important», «considerably important», etc.
To rank criteria by importance, let us build a matrix of comparisons based on grading scale and calculate eigenvector of obtained matrix of comparisons using one of the formulas (21) – (25). Elements of this vector may be taken as degrees of importance of the respective criteria.

Identifying degrees of impact of factors on criteria. In reality, usually, numerous factors of various nature, from socio-political to scientifico-technical, have an impact on selected criteria of selection of projects. Ignoring these factors lead to undesirable results. In such cases, relationships among criteria take the following forms:

· If there is a factor 
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· If there is a factor 
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, criterium 
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 is much more important than criterium 
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 and so on.

· These linguistic relationships may be paraphrased also as follows:
· Factor 
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 impacts weakly on relationship between criteria 
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 and 
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· Factor 
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 impacts strongly on relationship between criteria 
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 and 
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.

In the general case, it is possible to set up fuzzy relationships of the following types between factors based on this relationships:
· Factor 
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 is identical with (equally impacts on) factor 
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;
· Factor 
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 is considerably stronger than (considerably impacts on) factor 
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 and so on.

Having selected respective grading scale, let us buld a matrix of paired comparisons of factors and find eigenvector of this matrix by one of the formulas (21) - (25). Elements of the found eigenvector are nothing else but essence of degree of impact of factors.

Identifying degrees of importance of criteria depending on impact of factors. If relationships between criteria depend on 
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 number of factors, as indicated in the previous section, then solution to this problem of ranking of criteria by importance is carried out as follows:

· For each factor 
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 let us build a mtarix 
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 of paired comparisons of criteria based on grading scale.

· Let us find eigenvector of matrix 
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 by one of the formulas (21) – (25), by replacing matrix 
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Thus, obtained 
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 eigenvectors rank criteria by each of the factors, i.e., elements of the l – th eigenvector is the degree of importance of criteria by l – th factor. Now all that remains is to identify final degrees of importance of criteria by all factors. For that:

· Let us identify one of preferential relationships considered in (21) – (25) among criteria ranked by each factor, and using these relationships, let us rank the criteria.

Selection of the relationship of preference depends on LPR, but as noted above, in case of ambiguity of ranking, after applying one relationship, another relationship of preference may also be applied to a result.

Thus, the essence of described method is to shift from fuzzy linguistic relationships to accurate relationships using paired comparisons and quantitative assessments of linguistic relationships.

Another approach based on fuzzy multiplicities will be described in consequent paragraphs.

Multicriterial ranking and selection of projects. Methodology outlined in the previous para may also be applied to rank projects:
· For each 
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 - th criteria, let us construct a matrix 
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· Let us find eigenvectors of matrices 
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· From derived eigenvectors, the elements of which define essence of project evaluation by respective criteria, let us develop relationships of preference between projects and respective selection function, to be exact, one of the relationships decsribed in para 2. IN doing so, if the result of ranking is ambiguous, then another relationship of preference is also applied to the result. Again, a choice of relationship is made by LPR depending on his or her purpose.

If instead of ranking the projects, it is required to select optimal project, then this problem can be solved by applying selection function considered in para 2. Once again, the choice of selection function for application depends on what LPR desires.

3.2. Multicriterial project selection with application of fuzzy multiplicities
Another approach to solving problems of ranking and selection is to apply apparatus of fuzzy multiplicities. Substance of this approach is the following:

· Fuzzy multiplicities are entered in certain way;

· Objects to be ranked are evaluated through such quantities that define degree of attachment of objects to such fuzzy multiplicities.

· Final ranking of objects is determined on the basis of intersection of fuzzy multiplicities, i.e. assessment by which objects get ordered are degrees of attachment of objects to intersection of these fuzzy multiplicities.

In relation to each of these exercises considered in previous para, such approach gives rise to various methods of identifying degrees of attachment to fuzzy multiplicities. But for objects that are connected by fuzzy linguistic relationships, they can also be characterized by matrix of paired comparisons, it is possible to apply a single method of identifying degree of attachment, the essence of which is to select degree of attachment of elements of normalized eigenvector corresponding to maximal eigenvalue of matrix of comparisons. It can be seen from here that fuzzy multiplicities of formulas (21)- (25) may be used for determining degrees of attachment of respective objects.
Let us demonstrate this through some of the above-mentioned exercises.

Identifying degrees of importance based on intersection of fuzzy multiplicities. In a case when every criterium depends on factors 
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 by one of the formulas (21) - (25), let us enter fuzzy multiplicities:
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Weighted intersection of multiplicities
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where 
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 is a degree of impact of factor 
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 on the importance of criterium, while operation of raising to power conforms to operations of squeezing and streching of fuzzy multiplicities and determines final ranking of criteria accounting for all impacting factors. It implies that degrees of attachment 
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are degrees of importance of criteria 
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Note that degrees of impact of factors 
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 are also defined as elements of eigenvector of matrix of comparison of factors.

If it is necessary to select criterium with the greatest importance, then such criterium is found from the condition:
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Ranking of projects based on fuzzy multiplicities. In this problem, criteria are considered as fuzzy multiplicities:
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while degrees of attachment 
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Hence, numbers 
[image: image319.wmf])

(

j

i

P

m

 can be estimated through one of the formulas (21) - (25), where instead of matrix 
[image: image320.wmf]A

 matrices 
[image: image321.wmf]m

i

S

i

,

1

,

)

(

=

 are taken alternately.

Now, let us take weighted intersection of fuzzy multiplicities:
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where 
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[image: image326.wmf]n

j

P

P

j

i

i

j

,

1

),

(

min

)

(

=

=

m

m

 ,                                                    (32)
which are just (normalized) assessments of projects. If optimal project P* is to be selected, such selection is made from the condition:
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Thus, multi-criterial selection of optimal project with factors impacting on the criteria (in other words, when criteria depend on factors) is made in the following order:

· Identify degrees of impact of factors on criteria by paired comparison of factors.

· Identify degrees of importance (ranking) of criteria on the basis of weighted intersection of fuzzy multiplicities 
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· Ranking of projects on the basis of weighted intersection of fuzzy multiplicities 
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 .
· Selection of optimal project from (33). 

It can be easily noted that this sequence of actions is analogoues to the one, when ranking of criteria and projects are implemented based on relationships of preference and selection functions.

It is necessary to note that, as mentioned presviously, application of these two approached gives rise to numerous algorithms of calculation of both eigenvectors of matrices of comparisons and values of functions of attachments to fuzzy multiplicities.
In addition, application of any two algorithms based on different approaches not always can lead to the same result as all algorithms are related, this way or another, to subjective judgments of LPR and the exercises of ranking themselves possess certain extent of subjectivity. For this reason, matching various methods of ranking and selection of one of them is left to be done by LPR.

In conclusion, let us note that apart from the method of identifying degrees of attachment described above, there are a number of other methods, such as statistical, parametrical, method of expert judgments, etc., which may be applied to solution of a problem of ranking. We do not consider these methods for the sake of describing a common methodology based on paired comparisons of different objects (factors, criteria, projects, etc.). On the other hand, in the general case, it is impossible to prove the advantage of any method over the rest and every method is relatively good only for identification of a certain class of problems.

Multi-criterial selection of projects on the basis of fuzzy relationships of preference. Let us now consider a problem of selecting the best project in a situation, when information on paired comparison of projects for each criteria 
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Definition 1. Fuzzy relationship 
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Definition 2. Fuzzy relationship 
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Definition 3. Fuzzy relationship of non-dominant projects of multiplicity 
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where - 
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Based on these definitions, a procedures of selection of optimal project is implemented according to the following scheme:

1.  A following fuzzy relationship is built:
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with function of attachment:
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2. A fuzzy sub-multiplicity of non-dominant projects in multiplicity 
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3. A Fuzzy relationship 
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 is built with function of attachment:
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where numbers 
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4. A fuzzy relationship of non-dominant projects in multiplicity 
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This function ranks the project by degree of being dominated.

5. An intersection of fuzzy relationships Q1 and Q2 is built with function of attachment:
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6. A multiplicity is built:
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where projects are ranked by degrees of being dominated.

7. The optimal project is the one that has the highest degree of non-domination.
Multi-criterial selection of projects based on fuzzy quantitative assessments. Sometimes, fuzzy relationships of preference betwee projects can be presented through fuzzy nubers having a triangle form (triangular fuzzy numbers), i.e. functions, attachment of which is of a triangular kind (Figure 2):
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Figure 2.
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where numbers 
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Meanwhile numbers 
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Ranking of projects are implemented on the basis of fuzzy composition of the kind:
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The best project is considered the one that has the highest value 
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Priority of each project is estimated through selection of a minimum of points of intersection of the right border of fuzzy number 
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 conforming to it with borders of fuzzy numbers representing weighted values of projects located to the right on the numerical axis (meeting the condition 
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). In doing so, it is presumed that right border of area of definition of fuzzy numbers conforms to the most preferred values, while the left one to the worst ones.

Multi-criterial selection on the basis of fuzzy logical conclusion. Let us now consider a problem multi-criterial selection of the best project in circumstances, when criteria and projects are assessed by fuzzy terms (multiplicities), which are the values of linguistic variables given in universal multiplicities U and 
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 respectively. Examples of such assessments are also such values as «small», «medium», «large», etc., with possible modifiers «not», «much», «less», «more», etc., for criteria and values «satisfactory», «attractive», etc., with the same modifiers  and for projects [      ]. In doing so, it is presumed that quality of projects are assessed depending on valuesof criteria in implicationary form. For instance:
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: «If NPV is in the middle, IRR is large and risk is small, then project is «attractive».
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Let us denote more formally statements such as «α is β», where α – is the name of linguistic variable, while β is its value; through «α = β», let us consider criteria 
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Generally speaking, such statements will look as:
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Here 
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In doing so, for operations 
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 functions of attachment 
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b) For disjunction 
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Here, 
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Let us denote 
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There are many methods of expressing implications in fuzzy manner, and the more widely known are the following:


[image: image426.wmf]þ

ý

ü

î

í

ì

÷

ø

ö

ç

è

æ

=

Î

)

(

),

(

min

),

(

max

)

,

(

e

e

v

E

M

M

V

v

H

m

n

m

n

m

m

,                                            (53)

[image: image427.wmf]þ

ý

ü

î

í

ì

-

=

Î

)

(

),

(

1

max

)

,

(

e

e

v

E

M

V

v

H

m

n

m

m

,                                                       (54)

[image: image428.wmf]þ

ý

ü

î

í

ì

+

-

=

Î

)

(

)

(

1

,

1

min

)

,

(

e

e

v

E

M

V

v

H

m

n

m

m

,                                                    (55)
where 
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 is a fuzzy sub-multiplicity of multiplicity 
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Let us note that implication defined using (55), is known as Lukasevich' implication – a Polish mathematician who introduced this operation for multi-value logics.

Now, using any rule from (53) - (55), let us restructure statements 
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having estimated for each 
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As we know, there is a rule in the logics of statements:

If α = β , then (=( ( (α,()(( β,() , 
where (α,() is a new linguistic variable, (β,() is its value, while а ( is a sign of implication.

Fuzzy analogue of this rule is a composed rule of derivation:
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where - 
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 is a fuzzy sub-multiplicity of multiplicity 
[image: image438.wmf]E

.

To calculate the measure of acceptability of each project, let us apply a rule:
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here 
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 is a degree of acceptability of a project 
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comparison of projects is done by comparing fuzzy sub-multiplicities 
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For each 
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2.  For
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3.  For 
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Then a point value 
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If the best project by all criteria is to be identified, then it will follow from the condition:
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a project that conforms to value of 
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, will be the one sought (the best).
Note that in fuzzy realization of implication using different formulas (53) - (55) may lead to different ranking of projects. Therefore a selection of one of the methods (53) - (55) of realization of implication in some cases may call for additional research. However, note that in many practical problems a preference is given to Lukasevich' fuzzy implication, i.e. rule (55).


4. Applied problem on project selection

At the end of this Chapter, let us illustrate application of some selection functions. Let us consider projects from Table 1 as an example. Matrix of comparison constructed on the basis of Saati grading scale has the form (Table 3).
                                                           Table 3
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As can be seen from the table, this matrix is not compatible. Eigenvector calculated by formula (25), has the following coordinates:
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Values of these coordinates are the degrees of importance of the respective criteria.

Now, let us compare respective criteria of projects and calculate their relative importance by corresponding criteria (AIC) - Tables 4 – 8.
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All of these obtained results can be summarized in the following Table 9:

Table 9

	
	Project 1
	Project 2
	Project 3
	Project 4
	AIC
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The last row is the importance of all respective projects accounting for importance of criteria. Selection methods considered in para 2 may be applied both directly to Table 1 and the last table:

· Pareto selection function. Selection function 
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· Majoritarian selection function. Let us define a number for each criterium and project, which shows number of projects with respect to which respective project is better than the rest by corresponding criterium (by a strong preference) (Table 10):
 










     Table 10
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	Project 4
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· Ideal project selection function. Let us propose as an ideal project the one that by criteria of importance is maximal from corresponding relative criteria of importance among the existing projects and calculate Eucledian distance (without taking into account the relative importance of criteria):
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Below, ranking of existing projects by various selection methods are shown (Table 11):

Table 11
	N
	Accounting for AIC
	Majoritarian
	Ideal project

	1
	Project 2
	Project 2
	Project 3

	2
	Project 3
	Project 3
	Project 2

	3
	Project 4
	Project 4
	Project 1

	4
	Project 1
	Project 1
	Project 4


Hence, new algorithm of solving problems of evaluationg impact of various factors on ranking of criteria by relative importance for the purpose of selecting priortiy projects introduced above enables development of a more eefective program of investments.

Conclusions
The methodological aspect of common characteristic features of main stages and criteria of appraisal of economic effectiveness of investment projects were researched and for the first time a comprehensive approach was proposed to appraise and select a group of priority investment projects meeting requirements of various criteria of effectiveness accounting for impact of different technical, technological, economic, financial, organizational, political and other factors in the circumstances of uncertainty, risk and fuzziness of situations, which enables the development of a more effective program of investments. 

We propose a new algorithm of selection of optimal project on the basis of relationship of preference by degree of relative quality of projects considered and with application of methods based on fuzzy multiplicities, fuzzy relaionship of preference and multicriteriality of selection enabling a single approach to solving the problem: identification of degree of impact of various factors and finding a limited number of the most influential factors; assessment of impact of various factors on ranking of criteria by their relative importance; selection of a group of a more priority projects.

The proposed methodology may be applied successfully in decision making on appraisal and selection of factors, criteria and projects for various sectors of economy.
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