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Abstract. The current paper considers a stochastic R&D process where the in-

vented production technologies consist of a large number n of complementary com-

ponents. Complementarity is modeled with the CES aggregator function. Draw-

ing from the Central Limit Theorem and the Extreme Value Theory we find, un-

der very general assumptions, that the cross-sectional distributions of technological

productivity are well-approximated either by the log-normal, Weibull, or a novel

“CES/Normal” distribution, depending on the underlying elasticity of substitution

between technology components. We numerically assess the rate of convergence of

the true unit factor productivity distribution to the theoretical limit with n.
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1 Introduction

Most technologies used nowadays are complex in the sense that the production pro-

cesses (and products themselves) consist of a large number of components which might

interact with each other in complementary ways (e.g., Kremer, 1993; Blanchard and

Kremer, 1997; Jones, 2011). Based on this insight, the current paper assumes that

the total productivity of any given technology is functionally dependent on the individ-

ual productivities of its n components as well as the elasticity of substitution between

them, σ. This functional relationship is captured by the CES aggregator function. The

stochastic R&D process which invents new complex technologies is in turn assumed to

consist in drawing productivities of the components from certain predefined probability

distributions (Jones, 2005; Growiec, 2008a,b, 2012).

Based on this set of assumptions, we obtain surprisingly general results regarding

the implied cross-sectional distributions of technological productivity. Namely, drawing

from the Central Limit Theorem and the Extreme Value Theory, we find that if the

number of components of a technology, n, is sufficiently large, these distributions should

be well approximated either by:

(i) the log-normal distribution - in the case of unitary elasticity of substitution between

the components (σ = 1);

(ii) the Weibull distribution - in the case of perfect complementarity between the

components (the “weakest link” assumption, σ = 0),

(iii) the Gaussian distribution - in the (empirically very unlikely) case of perfect sub-

stitutability between the components (σ → ∞),

(iv) a novel “CES/Normal” distribution - in any intermediate CES case, parametrized

by the elasticity of substitution between the components (σ > 0, σ ̸= 1).

Our theoretical contribution to the literature is supplemented with a series of nu-

merical simulations, allowing us to approximate the rate of convergence of the true

distribution to the theoretical limit with n. We also numerically assess the dependence

of the limiting “CES/Normal” distribution on the degree of complementarity between

the technology components, σ.

Potential empirical applications of the theoretical result, reaching beyond the scope

of the current paper, include providing answers to the following research questions:

• Does the “CES/Normal” distribution derived here (eq. (10)) fit the data on firm

sizes, sales, R&D spending, etc.? What is the implied value of σ?
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• Do industries differ in terms of their technology complexity as captured by n?

• Do industries differ in terms of the complementarity of technology components as

captured by σ?

• How do firms’ optimal technology choices and production function aggregation

(Growiec, 2012) enter the picture?

The remainder of the paper is structured as follows. Section 2 sets up and discusses

the model. Section 3 presents the numerical results. Section 4 concludes.

2 The model

2.1 Distributions of complex technologies

The point of departure of the current model is the assumption that technologies, in-

vented within the R&D process, are inherently complex and consist of a large number of

complementary components. Formally, this can be written down in the following way.

Assumption 1 The R&D process determines the productivity of any newly invented

technology Y as a constant elasticity of substitution (CES) aggregate over n ∈ N inde-

pendent draws Xi, i = 1, ..., n, from the elementary idea distribution F :

Y =


min{Xi}ni=1, θ = −∞,(
1
n

∑n
i=1Xi

)1/θ
, θ ∈ (−∞, 0) ∪ (0, 1],∏n

i=1X
1/n
i , θ = 0.

(1)

The elementary distribution F is assumed to have a positive density on [w, v] and zero

density otherwise (where w ≥ 0 and v > w can be infinite), and satisfy the condition of

a regularly varying lower tail (Leadbetter et al., 1983):

lim
p→0+

F(w + px)

F(w + p)
= xα (2)

for all x > 0 and a certain α > 0.

The parameter n in the above assumption captures the number of constituent com-

ponents of any given (composite) technology, and thus measures the complexity of any

state-of-the-art technology. The substitutability parameter θ is related to the elasticity

of substitution σ via θ = σ−1
σ
, or σ = 1

1−θ
. The case θ < 0 captures the case where
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the components of technologies are gross complements (σ ∈ [0, 1)), whereas θ ∈ (0, 1]

implies that they are gross substitutes (σ > 1).

It should be noted at this point that, as argued repeatedly by Kremer (1993), Jones

(2011) and Growiec (2012), the gross complementarity case is much more likely to pro-

vide an adequate description of real-world production processes than the gross subsi-

tutability case. The example of the explosion of the space shuttle Challenger due to a

failure of an inexpensive O-ring, put forward by Kremer (1993), is perhaps the best pos-

sible illustration of the potentially complementary character of components of complex

technologies.

More precisely, the minimum case (a Leontief function) reflects the extreme case

where technology components are perfectly complementary, and thus the actual pro-

ductivity of a complex idea is determined by the productivity of its “weakest link” (or

“bottleneck”). This case was assumed in the earlier related contribution by Growiec

(2012). Although likely, this case need not hold exactly in reality, since certain deficien-

cies of design can often be covered by advantages in different respects. The more general

CES case captures exactly this possibility (see also Klump et al., 2012).

The limiting Cobb-Douglas case (θ = 0) is the threshold case delineating gross com-

plementarity from gross substitutability. As shown by Kremer (1993), this case is already

quite illustrative of effects of complementarity between components of technologies.

Although technical in nature, the assumption (2) imposed on elementary probability

distributions F can also be intepreted in economic terms. First, the support of the

distribution must be bounded from below, which means researchers are not allowed

to draw infinitely “bad” technologies (zero is a natural lower bound). This rules out

distributions defined on the whole R such as the Gaussian. Second, the pdf of the

distribution F cannot increase smoothly from zero at w; there must be a jump. This

means that the probability of getting a draw which is “as bad as it gets” cannot be

negligible, and this rules out a few more candidate distributions such as the lognormal or

the Fréchet. Third, the lowest possible value of the random variable cannot be an isolated

atom, which rules out all discrete distributions such as the two-point distribution, the

binomial, negative binomial, Poisson, etc. Yet, the set of distributions satisfying (2) is

still reasonably large. It includes, among others, the frequently assumed Pareto, uniform,

truncated Gaussian, and Weibull distributions (cf. Growiec, 2012).
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2.2 Theoretical results

Let us now derive our theoretical results related to the limiting distribution of Y when

the number of technology components n → ∞. For analytical convenience, we denote

µθ = EXθ
i and σθ =

√
D2(Xθ

i ) =
√
EX2θ

i − (EXθ
i )

2.

Letting the technology complexity n be arbitrarily large, we obtain the following

result:

Proposition 1 If Assumption 1 holds with θ = −∞ (σ = 0), then as n → ∞, the

minimum of n independent random draws from the distribution F , after appropriate

normalization, converges in distribution to the Weibull distribution with the shape pa-

rameter α:

[1−F (xpn + w)]n
d−→ e−(

x
λ)

α

, (3)

where w = inf{x ∈ R : F(x) > 0}, pn = 1
λ

(
F−1

(
1
n

)
− w

)
and the free parameter λ > 0

is assumed to be proportional to the mean of the underlying distribution F .

Proposition 2 If Assumption 1 holds with θ = 0 (σ = 1), then as n → ∞, the product

of n independent random draws from the distribution F , after appropriate normalization,

converges in distribution to the log-normal distribution:

[1−F (x)]n
d−→ 1− Φ

(
lnx− µ1

σ1

)
. (4)

Proposition 3 If Assumption 1 holds with θ ∈ (−∞, 0) ∪ (0, 1] (σ ∈ (0, 1) ∪ (1,+∞]),

then as n → ∞, the CES bundle of n independent random draws from the distribu-

tion F , after appropriate normalization, converges in distribution to the “CES/Normal”

distribution with complementary cdf:

[1−F (x)]n
d−→ Φ

(
xθ − µθ

σθ

)
, (5)

and thus the following pdf:

g(x) =
|θ|

σθ

√
2π

xθ−1e
− (xθ−µθ)

2

2σ2
θ , x > 0. (6)

Hence, the class of “CES/Normal” distributions encompasses the Gaussian distribution

for the limiting case θ = 1 where the technology components are perfectly substitutable.

Proof of Propositions 1–3. For the case θ = −∞ the proposition follows directly

from the Fisher–Tippett–Gnedenko extreme value theorem, applied to the distribution
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F (Theorem 1.1.3 in de Haan and Ferreira, 2006, rephrased so that it captures the

minimum instead of maximum). From the theorem specifying the domain of attraction

of the Weibull distribution (Theorem 1.2.1 in de Haan and Ferreira, 2006; Section 1.3

in Kotz and Nadarajah, 2000), we obtain the necessary and sufficient conditions for the

complementarity mechanism to work. The implied parameter α is found to be unitary

for a wide range of distributions F (Growiec, 2012).

With θ = 0, by the Central Limit Theorem the distribution of Y satisfies:(∏n
i=1Xi

enµ1

) 1√
n

d−→ logN(0, σ2
1), (7)

where µ1 = E(lnXi) and σ1 = E(lnXi)
2 − (E lnXi)

2.

For the case θ ∈ (−∞, 0) ∪ (0, 1], we may use the Central Limit Theorem again,

obtaining:

√
n

(
1

n

∞∑
i=1

Xθ
i − µθ

)
→ N(0, σ2

θ). (8)

Thus, for sufficiently large n we may write that X(n) = 1√
n

∑∞
i=1X

θ
i ∼ N(

√
nµθ, σ

2
θ),

with slight abuse of notation. The mean of this distribution,
√
nµθ, is then also suffi-

ciently large for the probability that X(n) < 0 to be negligible. The CLT approximation

is thus consistent with the underlying assumption thatXi ∼ F takes only positive values.

It therefore makes sense to calculate the limiting distribution of Y = limn→∞X(n)1/θ.

This limiting distribution takes the following form. For y > 0 and with θ < 0, the

cdf of Y satisfies:

G(y) = P (Y ≤ y) = lim
n→∞

P (X(n) ≥ yθ) = 1− Φ̄

(
yθ − µθ

σθ

)
, (9)

where the cdf of the truncated normal distribution Φ̄
(

x−µθ

σθ

)
=

Φ
(

x−µθ
σθ

)
−Φ

(
−µθ
σθ

)
1−Φ

(
−µθ
σθ

) ≈

Φ
(

x−µθ

σθ

)
if n is sufficiently large. Upon differentiation, we obtain the following pdf

of the limiting “CES/Normal” distribution, parametrized by θ < 0, µθ > 0 and σθ > 0:

g(y) =
−θ

σθ

√
2π

yθ−1

1− Φ
(

−µθ

σθ

)e− (yθ−µθ)
2

2σ2
θ ≈ −θ

σθ

√
2π

yθ−1e
− (yθ−µθ)

2

2σ2
θ , y > 0. (10)

Conversely, for y > 0 and with θ ∈ (0, 1], the cdf of Y satisfies:

G(y) = P (Y ≤ y) = lim
n→∞

P (X(n) ≤ yθ) = Φ̄

(
yθ − µθ

σθ

)
≈ Φ

(
yθ − µθ

σθ

)
. (11)
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Upon differentiation, we obtain the following pdf of the limiting “CES/Normal” distri-

bution, parametrized by θ ∈ (0, 1], µθ > 0 and σθ > 0:

g(y) =
θ

σθ

√
2π

yθ−1

1− Φ
(

−µθ

σθ

)e− (yθ−µθ)
2

2σ2
θ ≈ θ

σθ

√
2π

yθ−1e
− (yθ−µθ)

2

2σ2
θ , y > 0.� (12)

3 Numerical results

The upside of above theoretical results is that they provide theoretical limits for the

distributions of complex technologies, regardless of the underlying distribution of tech-

nology components F . Unfortunately, these limits are exactly correct only if the tech-

nologies are infinitely complex. It is therefore of great importance to assess the pace

of convergence of true underlying distributions to the limiting ones with the number of

components, n, to see how large departures from the theoretical limit should be expected

if n is in fact finite. To this end, we have carried out a series of numerical computations.

Another interesting issue is the dependence of the limiting “CES/Normal” distribu-

tion on the complementarity parameter θ (or equivalently, the elasticity of substitution,

σ). This will be assessed numerically as well.

In the current section, we shall first describe our numerical framework and then pass

on to a short outline of the results.

3.1 Generating the distribution of Y

The preliminary step of our numerical exercises consists in generating a sample of n

units, randomly and independently drawn from the uniform distribution defined on an

interval in the positive domain (which is a particular instance of a distribution satisfying

Assumption 1):

Xi ∼ U [a, b], b > a > 0, i = 1, 2, ..., n. (13)

Next, we computed the CES aggregate of these random draws according to:

Y =


minn

i=1{Xi}, θ = −∞,(
1
n

∑n
i=1Xi

)1/θ
, θ ∈ (−∞, 0) ∪ (0, 1],∏n

i=1X
1/n
i , θ = 0,

(14)

for a few arbitrary values of the complementarity parameter θ. For a fixed sample size of

n, we repeated this procedurem = 10000 times and plotted the empirical histogram of Y .
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Figure 1: Histograms of simulated Y . Assumed parameter values: n = 1000, a = 0.5, b =

2.

The histograms of the generated variables are presented in Figure 1. These histograms

(with B = 100 bins) were then transformed into empirical pdfs.

Figure 1 confirms a trend of increasing skewness of the empirical distribution when θ

declines towards−∞, which can be also inferred from the pdf of the limiting“CES/Normal”

distribution.

3.2 The lognormal and Weibull limits

The second step of our numerical exercise consists in confirming the theoretical log-

normal limit for the case θ = 0. We see that the theoretical distribution indeed aligns

with the simulated data almost perfectly when n = 1000. Similarly, the theoretical

Weibull limit obtained for the case θ = −∞ fits the simulated data almost perfectly as

well.1 The results are contained in Figures 2–3.

1Nonlinear least squares fit of the Generalized Gamma distribution (a three-parameter class of dis-

tributions) is included for comparison.
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Figure 2: Simulated pdf of Y vs. the lognormal limit for n → ∞. Assumed parameter

values: n = 1000, a = 0.5, b = 2.
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Figure 3: Simulated pdf of Y vs. the Weibull limit for n → ∞. Assumed parameter

values: n = 1000, a = 0.5, b = 2.

3.3 The CES/Normal limit

The next step consisted in confirming the theoretical formula for the limiting“CES/Normal”

distribution under intermediate values of the complementarity parameter, θ ∈ (−∞, 0)∪
(0, 1]. As it can be seen on Figure 4, the theoretical “CES/Normal” limit is fully con-

firmed in this case; it is clear that none of the seemingly similar (and more generously

parametrized) distributions can be fitted to the simulated data equally well.

This numerical exercise confirms that (a) the Weibull distribution misses the shape of

the pdf completely when θ is finite, (b) all other considered distributions fit these data
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Figure 4: Simulated pdf of Y vs. the CES/Normal limit (eq. (10)) for n → ∞. Assumed

parameter values: n = 100, a = 0.5, b = 2, θ = −4.

better, but tend to underestimate the probabilities of tail events. In fact, the actual

limiting distribution is much more skewed than the estimated pdfs.

Regarding Figure 4, please note the following difference between the “CES/Normal”

distribution and the“CES/Normal Free”case. The first one takes the (known) theoretical

values of mean and variance (µθ, σθ) as well as θ itself as given, whereas the latter

takes them as free parameters to be estimated by nonlinear least squares. We see that

improving the fit in the body of the distribution of the finite CES aggregate (n = 100 <

∞) compromises the quality of fit in the right tail.

3.4 Convergence as n → ∞

The next step consists in repeating the numerical experiment for a fixed value of θ ∈
(−∞, 0) ∪ (0, 1] but various sample sizes n to assess the pace of convergence of the

resultant distribution to the theoretical “CES/Normal” limiting distribution (eq. (10)).

This requires us to standardize the resultant distributions so that they have a fixed (e.g.,

zero) mean and unitary standard deviation.

In Figure 5 we observe that as n increases, the resulting distribution gradually evolves

from the uniform distribution of Xi to the limiting CES/Normal distribution, derived in

the previous section. In the body of the distribution, convergence is rather fast and is

largely done already for n = 16. The tails of the distribution are however much thinner

for small n than in the limiting distribution. This mirrors the known fact that tails

of a distribution need much more time to take their final shape, because they are by
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definition capturing rare events. Even for n = 2000, although the fit in the body is

already perfect, no observations have been found for tail events exceeding 6.
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Figure 5: Convergence of Y to the CES/Normal limit (eq. (10)) for different values of

n. Assumed parameter values: a = 0.5, b = 2, θ = −4.

3.5 Dependence of the CES/Normal distribution on θ

The final step of the numerical exercise is to illustrate the dependence of the limiting

CES/Normal distribution on the complementarity parameter θ, with special reference to

the tail. As illustrated by Figure 6, we find that the larger is complementarity between

technology components, the fatter the tail of the limiting distribution. To obtain this

result, we again standardize the resultant distributions.

Please note that the tail of the distribution with greatest complementarity is probably

misspecified due to numerical error.
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Figure 6: Convergence of Y to the CES/Normal limit (eq. (10)) for different values of

θ. Assumed parameter values: a = 0.5, b = 2.

4 Conclusion

In the current paper, we have obtained surprisingly general results regarding the implied

cross-sectional distributions of technological productivity. Namely, drawing from the

Central Limit Theorem and the Extreme Value Theory, we find that if the number of

components of a technology, n, is sufficiently large, these distributions should be well

approximated either by:

(i) the log-normal distribution - in the case of unitary elasticity of substitution between

the components (σ = 1);

(ii) the Weibull distribution - in the case of perfect complementarity between the

components (the “weakest link” assumption, σ = 0),

(iii) the Gaussian distribution - in the (empirically very unlikely) case of perfect sub-

stitutability between the components (σ → ∞),

(iv) a novel “CES/Normal” distribution - in any intermediate CES case, parametrized

by the elasticity of substitution between the components (σ > 0, σ ̸= 1).

Our theoretical contribution to the literature has been supplemented with a series

of numerical simulations, allowing us to approximate the rate of convergence of the

true distribution to the theoretical limit with n. We have also numerically assessed the

dependence of the limiting“CES/Normal”distribution on the degree of complementarity

between the technology components, σ.

What remains on the research agenda is to:
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• consider the possibility of using normalized CES aggregator functions (cf. Klump

et al., 2012) – or other reparametrizations – instead of standard CES ones in

computations of the “CES/Normal” limit,

• discuss the implied moments of the limiting distributions; ensure that there is

convergence in distribution when θ → 0 or θ → −∞,

• provide approximate theoretical results on the pace of convergence of n-unit tech-

nologies to the “CES/Normal”, Weibull or log-normal limit,

• verify the empirical relevance of CES/Normal distributions. Do we find it in data

on firm sizes, sales, R&D spending, etc.? What are the implied values of σ?
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