
PAMS.py:

a GAMS-like Modeling System
based on Python and SAGE

Roberto Roson1

January 2016

ABSTRACT
This paper presents an external module for the Python programming language and for the
SAGE open source mathematical software, which allows the realization of models based on
constrained optimization or non-linear systems. The module, which is freely available for
download, allows describing the structure of a model using a syntax similar to that of popular
modeling systems like GAMS, AIMMS or GEMPACK; in particular by allowing the automatic
replication of equations, variable and parameter definitions on the basis of some specified sets.

KEYWORDS: GAMS, Python, SAGE, AIMMS, CGE, optimization software, applied economic
modeling.

1 Dipartimento di Scienze Economiche, Ca'Foscari University, Venice and IEFE, Bocconi University, Milan. E-Mail:
roson@unive.it .

1

mailto:roson@unive.it

1. Introduction

Many applied models, especially in economics, are based on non-linear constrained optimization and
system solving. Years ago, the standard way to realize simulations for this kind of models involved
writing your own code, using a programming language like FORTRAN, possibly making calls to
external math library subroutines. Subsequently, the introduction of packages like Matlab, GAUSS,
Octave and many others have made this process somewhat simpler, because vectors and matrices could
be treated as single variables, and complex numerical tasks could be performed with a single
instruction.
However, one fundamental problem remained: the model code still looked much different from the
more familiar mathematical notation one would have used in a paper. Therefore, checking and
modifying the model code written by another researcher was a rather daunting task.
To address this issue, GAMS (General Algebraic Modeling System) was developed by Alexander
Meeraus and many of his collaborators at the World Bank in Washington D.C., since the late '70s
(Meeraus, 1983). The main purpose of GAMS was (and still is) “providing a high-level language for
the compact representation of large and complex models” and “permitting model descriptions that are
independent of solution algorithms”.
This paper presents an external module for the Python programming language and for the SAGE open
source mathematical software, based on the same principles underlying GAMS and other similar
packages. The purpose is providing a tool that takes the best of both worlds: the simplicity and clarity
of GAMS-like systems combined with the flexibility and power of Python and SAGE.
The paper is structured as follows. In the next section, some key characteristics of GAMS and other
popular Modeling Systems are reviewed in some detail. Section 3 introduces the Python programming
language and the closely related SAGE system for symbolic and numerical computation. Section 4
illustrates the basics of the PAMS.py syntax, and in Section 5 a practical example is provided. A
discussion follows in Section 6 and a final section concludes.

2. Indexing in GAMS and other popular Modeling Systems

A model is described in GAMS through an ordinary text file, which has a structure and a syntax that
closely resembles the standard mathematical notation. GAMS itself does not solve the model, but rather
processes the input file and build data objects that are passed to external solvers, then elaborates the
solvers output in a way that makes the results easily understandable.
One central concept in the GAMS language is the automatic indexing of variables, parameters and
equations (Brooke et al., 1998). For example, if there are many markets indexed by i, then P(i) could be
the equilibrium price for them, determined by an equation EQUIL(i), matching supply and demand
(possibly linear functions of some parameters a, b, c and d). In GAMS notation, all this is expressed as:

Set
 i markets / new-york, chicago, topeka /;
Parameters
 a(i), b(i), c(i), d(i);
Variable
 P(i) equilibrium price in market i;
Positive Variable P;
Equation
 EQUIL(i) equilibrium condition in market i;
EQUIL(i).. a(i)+b(i)*P(i)=E=c(i)-d(i)*P(i);

2

When the GAMS interpreter reads the code above, it generates three sets of parameters, three price
variables and three equations, one for each of the markets. A model in GAMS is basically a group of
equations which, depending on the context, are interpreted as a system, as constraints in an
optimization problem, as complementarity conditions, etc.
A similar indexing mechanism is used by AIMMS (Bisschop, 2006), a mathematical modeling tool
introduced in 1993 and very similar to GAMS in many respects, including its role as interface towards
external solvers. Although models are typically formulated in AIMMS in an interactive way, through a
Graphical User Interface (GUI), the model description can be found inside an ordinary (and editable)
text file, much like GAMS (Bisschop and Roelofs, 2004).
For instance, the definition of a price variable P over a set of elements i is stated in an AIMMS model
code as:

Variable P {
 IndexDomain: i;
 Range: nonnegative;
 }

And an equation is expressed as:

Constraint CONSDEM {
 IndexDomain: (i,h);
 Definition: P(i)*QQ(i,h) = IN(h)*IO(i,h);
 }

Another popular modeling system, which also uses automatic indexing based on sets, is GEMPACK
(Codsi and Pearson, 1998). GEMPACK is almost only used for building and running CGE models
(Horridge and Pearson, 2011) but, unlike GAMS and AIMMS, does not interface with external solvers
and it is only intended to handle (large) non-linear systems (Pearson, 1988, Harrison and Pearson,
1996).
A GEMPACK model is described in a text file using a language called TABLO. Here is an example of
a price variable definition in TABLO:

Variable (all,i,TRAD_COMM)(all,s,REG)
 ppd(i,s) # price of domestic i to private households in s #;

Whereas an equation is formulated as:

Equation PHHDPRICE
eq'n links domestic market and private consumption prices (HT 18)
(all,i,TRAD_COMM)(all,r,REG)
 ppd(i,r) = atpd(i,r) + pm(i,r);

3. Python and SAGE

Over the last decade, Python has become one of the core languages of scientific computing, and it is
increasingly being used to implement numerical models in economics and statistics (Sargent and
Stachurski, 2015). Python is free and open source, and it is supported by a vast collection of standard
and external software libraries, including: NumPy and SciPy (array processing capabilities, numerical

3

calculus), Matplotlib (graphics), SymPy (symbolic algebra), Pandas (statistics), NetworkX (graphs).
SAGE is a free open source alternative to commercial programs like Magma, Maple, Mathematica, and
Matlab (Stein, 2012). It combines about 100 open-source packages with a large amount of new code,
and provides both a sophisticated multiuser web-based graphical user interface and a powerful
command line interface.
SAGE is based on Python (indeed, it can be seen as a bundled Python distribution with pre-linked and
compiled external libraries). It includes a Python interpreter and, for this reason, one can use almost
anything ever written in Python directly inside SAGE.

4. How to use the PAMS.py module

Python allows loading external modules (thus, SAGE as well), that are pieces of codes which, once
loaded, can be interpreted and therefore can make some extra functionalities available. The Python
language is object-oriented, meaning that “classes” of objects can be defined, each one with specific
properties and actions that can be undertaken with all objects belonging to the class.
PAMS.py is an external module for Python and SAGE, defining classes for parameters, variables,
equations and models, in a way similar to GAMS.
First, the module must be loaded and made available to the Python interpreter, which can be done by
issuing the command:

load('[path]/PAMS.py')

where [path] is a path for the directory containing the file PAMS.py. The module, which is a plain text
file, is written in Python and therefore can be understood by both Python and SAGE. However, since it
uses some libraries of SAGE, if one wants to use it inside a Python program, the latter must be run
using the SAGE built-in Python interpreter.
Next, one may want to define sets. There is not a set class in PAMS.py, because sets (and lists, and
tuples) are primitive data structures in Python. To define a set as one would do in GAMS, simply type
something like2:

industries = ('Agriculture','Manufacturing','Services')

An indexed parameter can be defined in this way:

pp = Parameter(descr,dim,indexlist,mat)

where: pp is the chosen parameter name, descr is a string of description (e.g., 'this is a parameter',
accessible at any time as p.description), dim is the dimension in terms of sets (it can be 0, meaning a
scalar parameter, 1, 2 or 3, accessible as p.dimension), indexlist is a list of sets, consistent with the
dimension (e.g., if dim=2, indexlist could be: (industries, regions)), mat is a matrix (or a scalar number)
containing the parameter values.
Parameter values are stored in a Python “dictionary”, named p.v. For example, one specific parameter
value could be pp.v['Services','Italy']. Remember that, contrary to GAMS, “.v” must be appended to
the name of a parameter (or variable) to refer to its content.

The syntax for defining a variable is:

2 In the Python jargon, this is a tuple of strings.

4

vv = Variable(descr,dim,indexlist,name,bounds=(None,None),inval=1.0)

where: vv is the chosen variable name, descr, dim and indexlist have the same meaning as in the
parameter definition, name is a string which is used to construct the variable internal names (it may or
may not be the same as vv but, since it is a string, it must be enclosed in hyphenation marks, like 'vv' or
“vv”). When a multidimensional variable is created, it is associated to a Python dictionary (vv.v)
containing the variable internal names. There is a specific internal name for each element of the
variable set, built by appending components of the indexes to the name, separated by underscore signs.
For example, the dictionary item vv.v['Services','Italy'] contains a Python variable termed
vv_Services_Italy. The two last elements in the definition of a variable are optional and can be omitted:
bounds specifies lower and upper bounds for the variable values (no bounds if missing), inval specifies
the initial variable value (default is 1).

An equation is introduced by:

ee = Equation(descr,dim,indexlist,eqstr)

where: ee is the equation name, descr, dim and indexlist have the usual meaning, eqstr is a string
(thereby enclosed in hyphenation marks) describing the equation. The rules for writing the equation
are:

• The equation follows the Python/SAGE syntax for mathematical expressions. It is possible to
use built-in mathematical functions or functions previously defined inside the program. Please
notice that power exponentiation is written as '**' in Python but '^' in SAGE.

• The equality sign is '=='.
• If the right hand side is MIN or MAX, the left hand side is interpreted as a function to be

minimized or maximized, respectively. There can be multiple MIN or MAX equations, as in this
case they are algebraically added to form the objective function. The other equations in the
model are interpreted as constraints.

• All parameters and all variables must be referred to by their own names, followed by “.v”. Set
indexes for parameters and variables are enclosed in square parentheses.

• A running index, that is an index which is used to create copies of the same equation over
elements of a set, must be indicated with the mark §i for the first set in indexlist, §j for the
second one, §k for the third one.

• It is possible to use Python iterators in expressions. This is especially useful to make
summations. For example, sum(QQ.v[j,§i]*P.v[j] for j in industries) is a legitimate
expression, involving one running index §i and one summation index j.

A model is simply declared by:

mm = Model(eqlist,varlist)

where: mm is the model name, eqlist and varlist are lists of equations and variables (without “.v”) in the
model. The two lists can be specified directly inside the statement or as list objects defined beforehand.
No specific ordering of equations or variables is required.
Once a model has been declared, several actions or “methods” can be undertaken on it. To invoke a
method (in Python), it is necessary to write the model name, followed by a dot, then the method name,

5

then a couple of parentheses, where the values for parameters are given. If there are no parameters or if
one wants to accept the default parameter values, just type “()”.
Here are the methods available in PAMS.py for the Model class:

mm.equations() mm.variables()

Lists the equations or the variables in the model. In both cases, what is shown are the results after the
processing of equation and variable definitions, and all equations and variables are generated for all
combinations of elements in the running sets. This is a useful command to check whether the model has
been properly specified.

mm.fix(vname,val)

Fixes the value of the variable vname (specified as a string, consistent with mm.variables()) at the
numerical value val. Useful in a variety of different circumstances.

mm.solve()

Tries to solve the mm model symbolically, possibly identifying multiple solutions. This may work only
with simple models, otherwise the numerical method nsolve is suggested. If it works, the method
prints the result and returns a Python dictionary mm.solution, containing the outcome, which could
then be further elaborated.

mm.nsolve(method='hybr')

Numerical system solving. Initial points are specified by inval in the variable definitions (1 is the
default). method (optional) indicates the solution algorithm used by the invoked SciPy routine “root”;
hybr is the default, alternatives are: lm, broyden1, broyden2, anderson, linearmixing,
diagbroyden, excitingmixing, krylov. See the SciPy documentation for more information. In
case of successful convergence, likewise solve, it prints the solution and returns the Python dictionary
mm.solution.

mm.nopt()

Numerical optimization (minimization or maximization). It is based on the SciPy routine
“fmin_l_bfgs_b”. Again it prints the solution and returns mm.solution.

5. Example: Implementation of a very simple CGE model

To illustrate the use of the PAMS.py module, we show here how a very simplified Computable General
Equilibrium model can be implemented with PAMS.py and how it is possible to carry out some
simulation exercises.
A commented log (pdf file) of the corresponding SAGE session can be found at:
http://venus.unive.it/roson/Soft.htm
In the same directory, other useful documents can be retrieved, namely:

• the PAMS.py module itself, which is a text file;
• the equivalent formulation of the simple CGE model in GAMS;

6

http://venus.unive.it/roson/Soft.htm

• the equivalent formulation of the simple CGE model in AIMMS;
• the GAMS linear programming transportation problem (from the GAMS introductory tutorial);
• the same problem in PAMS.py (pdf log of interactive session);
• the same problem in AIMMS;

Let us assume that a Social Accounting Matrix (SAM) is available, describing income flows in a closed
economy, composed of three productive sectors, one final consumer and one primary resource. This
SAM, showed in Table 1, can be used to calibrate the structural parameters of a CGE model. Negative
numbers indicate (net) income generation, positive numbers expenses. Because of accounting
identities, all sums by row or column are zero.

Table 1 – A fictitious SAM
Agriculture Manufacturing Services Household

Agriculture -10 5 2 3

Manufacturing 5 -20 8 7

Services 2 10 -20 18

Labor 3 5 20 -28

This SAM can be introduced in Python as a matrix, with this command:

sam=matrix([[-10.,5.,2.,3.],[5.,-20.,8.,7.],[2.,10.,-30.,18.],
[3.,5.,20.,-28.]])

Sets are directly defined as Python tuples. Let us define three industries ('Ag','Ma','Se'), one household
or final consumption agent ('C'), one primary resource ('L'):

ind=('Ag','Ma','Se');hou=('C');res=('L')

Row headers are industries and primary resources, column headers are industries and final demand
agents:

rowh=tuple(list(ind)+list(res)); colh=tuple(list(ind)+list(hou));

From the SAM above, let us extract an input-output matrix, where it is assumed that all industries do
not buy intermediate factors from themselves (therefore, negative numbers along the main diagonal
express, with reversed sign, the industrial output). Also, let us derive a reduced IO matrix, restricted to
intermediate factors. This will turn out useful later, because we shall assume that intermediate factors
are not substitutable among themselves. Some Python instructions to achieve this are:

IOmat=matrix(RR,len(rowh),len(colh))
for j in range(len(colh)):

for i in range(len(rowh)):
if i==j:

IOmat[i,j]=0
else:

IOmat[i,j]=sam[i,j]/(-sam[j,j])

7

IORmat=matrix(RR,len(ind),len(ind))
for j in range(len(ind)):

for i in range(len(ind)):
IORmat[i,j]=IOmat[i,j]/sum(IOmat[k,j] for k in

range(len(ind)))

Now we can start defining parameters. If the PAMS.py has been previously loaded, we can introduce
the IO (multidimensional) parameter, with values (IO.v) obtained from the IOmat matrix. Its
dimensions are rowh x colh. Elements in these two sets will be later used as indexes.

IO=Parameter('Input-output coefficients derived from the SAM',2,
(rowh,colh),IOmat)

Analogously, for intermediate factors:

IOR=Parameter('Input-output coefficients for the intermediate
bundle',2,(ind,ind),IORmat)

Physical endowment of primary resources by the representative consumer is:

END=Parameter('Primary resources endowment',1,res,list([-sam[3,3]]))

Let us now turn to the definition of variables. First the price variables for the produced goods and for
the bundle of intermediate factors:

P=Variable('Price of marketed goods',1,rowh,'P',(0,1000),1)
PB=Variable('Price of intermediate bundle',1,ind,'PB',(0,1000),1)

The corresponding quantity variables are:

Q=Variable('Produced output',1,ind,'Q',(0,1000),20)
QB=Variable('Intermediate bundle',1,ind,'QB',(0,1000),20)

Intermediate flows, defined for all elements in the SAM, including consumption, are:

QQ=Variable('Intermediate quantity flow',2,(rowh,colh),'QQ',
(0,1000),5)

Income of the representative consumer is expressed as:

IN=Variable('Income',1,hou,'I',(0,1000),28)

Now the various equations in the model can be specified.
Let us start from the basic market equilibrium condition between supply and demand for produced
goods:

MARKET=Equation('Market clearing',1,ind,'Q.v[§i] == sum(QQ.v[§i,j]
for j in colh)')

8

Notice the use of the §i mark. PAMS.py will generate as many equation as elements in the set ind, each
time replacing §i with a specific set element.
In principle, there would also be a market equilibrium condition for the primary resource, which would
look like:

ENDBAL=Equation('Endowment balance',1,res,'END.v[§i] ==
sum(QQ.v[§i,j] for j in ind)')

However, because of Walras' Law, this equation can be safely removed from the model system and
replaced by the choice of the numeraire, which means setting to unity a price, for instance the price of
labor:

NUMERAIRE=Equation('Fix numeraire (price of resource)',1,res,'P.v[§i]
== 1')

Household income is defined as the value of (owned) endowments:

INCOME=Equation('Income definition',1,hou,'IN.v[§i] ==
sum(END.v[j]*P.v[j] for j in res)')
ENDO=Equation('Definition of real income',2,
(res,hou),'QQ.v[§i,§j]==IN.v[§j]/P.v[§i]')

We assume that the representative consumer has a Cobb-Douglas utility function, implying that the cost
shares are constant:. This condition indirectly defines final consumption by the household:

CONSDEM=Equation('Consumption demand',2,
(ind,hou),'P.v[§i]*QQ.v[§i,§j] == IN.v[§j]*IO.v[§i,§j]') # Cobb-
Douglas

The production functions are of nested Cobb-Douglas/Leontief type, with unitary elasticity of
substitution between labor and the bundle of intermediate inputs, zero elasticity among intermediates.
This brings about the following demand functions:

BUNDLE=Equation('Int. demand bundle',1,ind,'P.v[§i]*Q.v[§i]*(1-
IO.v["L",§i]) == PB.v[§i]*QB.v[§i]') # Cobb-Douglas
INTERM=Equation('Intermediate demand',2,(ind,ind),'QQ.v[§i,§j] ==
QB.v[§j]*IOR.v[§i,§j]') # Leontief
RESDEM=Equation('Resources demand',2,(res,ind),'P.v[§i]*QQ.v[§i,§j]
== P.v[§j]*Q.v[§j]*IO.v[§i,§j]') # Cobb-Douglas

The zero profit conditions ensures that the unit price of all goods equates the minimum production cost
(a CD cost function):

ZEROP=Equation('Zero profit, price equals cost',1,ind,'P.v[§i] ==
(P.v["L"]**IO.v["L",§i])*(PB.v[§i]**(1-IO.v["L",§i]))')

The model is now ready:

mod_eq= [MARKET,INCOME,ENDO,SETPB,ZEROP,BUNDLE,INTERM,RESDEM,CONSDEM,

9

NUMERAIRE]
mod_var=[P,PB,Q,QB,QQ,IN]
SIMPLECGE=Model(mod_eq,mod_var)

Perhaps we may want to look at how the model system looks like after our commands have been
processed by PAMS.py…

SIMPLECGE.equations()

… or to check whether the number of equations is the same as the number of variables (30 in our case):

print len(SIMPLECGE.initialvalues)
print len(SIMPLECGE.elist)

Everything is correct, so we can go on with the usual “calibration round”, where we expect that all
prices will be equal to one in equilibrium:

SIMPLECGE.nsolve()

The nsolve command produces a lengthy output, which is not fully reported here (but can be seen in the
downloadable log file), including a list of endogenous variable values, for instance:

P_Ma = 1.0
P_Se = 1.0
P_Ag = 1.0

…
Q_Ma = 20.0
Q_Se = 30.0
Q_Ag = 10.0

…

Now more meaningful simulations can be realized, by changing the value of some exogenous
parameters. For instance, one simple experiment is varying the value of the numeraire. Since a
Walrasian general equilibrium can only determine relative prices, all endogenous prices will vary to the
same direction:

NUMERAIRE=Equation('Fix numeraire (price of resource)',1,res,'P.v[§i]
== 2')
mod_eq= [MARKET,INCOME,ENDO,SETPB,ZEROP,BUNDLE,INTERM,RESDEM,CONSDEM,
NUMERAIRE]
SIMPLECGE=Model(mod_eq,mod_var)
SIMPLECGE.nsolve()

Of course, this produces something like:

P_Ma = 2.0
P_Se = 2.0
P_Ag = 2.0

10

…
Q_Ma = 20.0
Q_Se = 30.0
Q_Ag = 10.0

…

6. Discussion: When and where could PAMS.py be advantageously used?

PAMS.py is by no means a serious alternative to packages like GAMS, AIMMS or GEMPACK, as they
offer many more functionalities, data exchange with spreadsheets, graphical user interfaces, etc.. On
the other hand, PAMS.py is totally free (likewise SAGE and Python) and the code can be inspected and
possibly improved by anyone interested and capable to do it. In fact, I am not a professional
programmer and I am sure that the module can be made better in many possible ways.
The main advantage of PAMS.py is given by the fact that it lives inside a SAGE/Python environment,
which allows to take full advantage of the power of both languages, as well as of the availability of a
huge number of libraries and complementary software, for virtually any scientific application. Indeed,
PAMS.py requires the previous installation of the SAGE mathematical software (which embeds a
Python interpreter), and this is currently available for the Mac and Linux operating systems, but can
also be run remotely with any browser, through an interactive session at http://www.sagemath.org.
Therefore, if you know quite well GAMS, AIMMS or GEMPACK and you are happy with these
packages, probably you would not need PAMS.py. However, if you have some previous knowledge of
Python, or SAGE, or if you want to attain it in the near future (which I would recommend to any
researcher), then you may like the possibility of integrating a GAMS-like model structure into a Python
or SAGE code.

7. Conclusion

This paper has presented an external module for programs written with the Python language and for the
SAGE mathematical software. This module allows the definition and solution of non-linear systems
and optimization problems, described in a way very similar to GAMS and programs alike.
The key common characteristic of PAMS.py and GAMS is the automatic indexing of parameters,
equations and variables. Since many elements of this kind can be defined with only one instruction (as
one would normally do, for instance when the model is illustrated in a scientific paper), understanding
how the model works directly by reading the program code is normally quite straightforward. The latter
feature turns out to be particularly critical when the model code needs to be understood and
manipulated by others, which may occur either in a team work or when replication and validation of
some results is called for.

References

Bisschop, J. (2006), AIMMS optimization modeling. Lulu.com.

Bisschop, J., and Roelofs, M. (2004), “The modeling language AIMMS”, in: Modeling Languages in
Mathematical Optimization (pp. 71-104), Springer US.

Brooke, A., Kendrick, D., Meeraus, A., Raman, R., and America, U. (1998), The general algebraic

11

http://www.sagemath.org/

modeling system, GAMS Development Corporation.

Codsi, G. and Pearson, K.R. (1998) "GEMPACK: General-purpose software for applied general
equilibrium and other economic modellers.", Computer Science in Economics and Management,
vol.1(3), pp.189-207.

Harrison, W. J., and Pearson, K. R. (1996), “Computing solutions for large general equilibrium models
using GEMPACK”, Computational Economics, vol.9(2), pp.83-127.

Horridge, M. and Pearson, K.R. (2011), Solution Software for CGE Modeling, General Paper No. G-
214, Centre of Policy Studies, Monash University.

Meeraus A. (1983), “An algebraic approach to modeling”, Journal of Economic Dynamics and Control,
Vol. 5(1), pp. 81-108.

Pearson, K.R. (1988), “Automating the Computation of Solutions of Large Economic Models”,
Economic Modelling, Vol. 5(4), pp. 385-395.

Sargent, T. and J. Stachurski (2015), Quantitative Economics with Python, available at: http://quant-
econ.net .

Stein, W. (2012), Sage for Power Users, available at: http://sagemath.org .

12

http://sagemath.org/
http://quant-econ.net/
http://quant-econ.net/

	1. Introduction
	2. Indexing in GAMS and other popular Modeling Systems
	3. Python and SAGE
	4. How to use the PAMS.py module
	5. Example: Implementation of a very simple CGE model
	6. Discussion: When and where could PAMS.py be advantageously used?
	7. Conclusion
	References

