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ABSTRACT  
The	  standard	  vector	  error	  correction	  (VEC)	  model	  assumes	  the	  iid	  normal	  distribution	  
of	  disturbance	  term	  in	  the	  model.	  This	  paper	  extends	  this	  assumption	  to	  include	  GARCH	  
process.	  We	  call	  this	  model	  as	  VEC-‐GARCH	  model.	  However	  as	  the	  number	  of	  
parameters	  in	  a	  VEC-‐GARCH	  model	  is	  large,	  the	  maximum	  likelihood	  (ML)	  method	  is	  
computationally	  demanding.	  To	  overcome	  these	  computational	  difficulties,	  this	  paper	  
searches	  for	  alternative	  estimation	  methods	  and	  compares	  them	  by	  Monte	  Carlo	  
simulation.	  As	  a	  result	  a	  feasible	  generalized	  least	  square	  (FGLS)	  estimator	  shows	  
comparable	  performance	  to	  ML	  estimator.	  Furthermore	  an	  empirical	  study	  is	  
presented	  to	  see	  the	  applicability	  of	  the	  FGLS.	  
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PART I 

ESTIMATION METHOD DEVELOPMENT 

 

1. INTRODUCTION 

Vector Error correction (VEC) model is often used in econometric analysis and estimated 

by maximum likelihood (ML) method under the normality assumption. ML estimator is 

known as the most efficient estimator under the iid normality assumption. However there 

are disadvantages such that the normality assumption is often violated in real date, 

especially in financial time series, and that ML estimation is computationally demanding 

for a large model. Furthermore in our experience of empirical study error terns in VEC 

model often show a GARCH phenomenon, which violates iid assumption. To overcome 

these disadvantages and to reduce computational burden of ML estimator it may be 

worthwhile to reconsider the feasible generalized least square (FGLS) estimator instead 

of ML estimator (MLE) because FGLS method is relatively free from the distributional 

assumptions and ease computational burden.   

 

The purpose of this paper is to examine the finite sample properties of FGLS estimator in 

VEC-GARCH model by Monte Carlo simulation and by real data analysis of the 

international financial time series. The paper is organized as follows: Section 2 briefly 

surveys the multivariate GARCH (MGARCH hereafter) model; Section 3 describes VEC 

representation of the vector autoregressive (VAR) model; Section 4 presents a VEC-

GARCH model and shows that this model can be estimated by FGLS within the 

framework of the seemingly unrelated regression (SUR) model; Section 5 examines the 

performance of FGLS by Monte Carlo simulation; Section 6 presents an empirical 

application of VEC-GARCH model and shows the applicability of FGLS; finally Section 

7 gives some concluding remarks. 
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2. MULTIVARIATE GARCH  

Multivariate GARCH model has been developed and applied in financial econometrics 

and numerous literature were published. The recent development in this area were 

surveyed by Bauwens, L., S. Laurent and J. V. K. Rombouts (2006) and T. Ter ̈svirta 

(2009) . Before investigating MGARCH model in this paper we briefly introduce 

MGARCH model focusing on relevant MGARCH models in our study.  

2.1. vech-GARCH model 

The univariate GARCH model has been generalized to N-variable multivariate GARCH 

models in many ways. The most straightforward generalization is the following vech-

GARCH model by Bollerslev, Engle, and Woodridge (1988): 

 

            
   

          (  )   ,   (    
 )    (1) 

 

where    (               )
 , and     is assumed to follows a multivariate normal  

distribution  (    ). An element of the variance covariance  matrix    is denoted by 

     :   [    ]   In the most general vech-GARCH model     (  ) is given by 

  

       (  )    ∑   
 
       (        

 )  ∑   
 
       (    ) (2) 

 

where     ( ) is an operator that vectorizes a symmetric matrix. We briefly illustrate the 

2-variable case (N=2) for simplicity. For N=2 and p=q=1     (  ) is written as follows: 

 

    (
          

          
)  (                  )

 
, 

 

and c is an (N(N+1)/2)×1=3×1 vector, and    and    are N(N+1)/2×N(N+1)/2 =3×3 

parameter matrices. Then     (  )      is written as 
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]   
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This representation is very general and flexible but there is a disadvantage that only a 

sufficient condition for the positive definiteness of the matrix    is known. Furthermore 

the number of parameters is (   )( (   )  )   (   )   which is large unless 

N is small. For example, if       and    , the number of parameters is 21, if N=3 

it is 78. This may cause computational difficulties. 

 

2.2. Diagonal vech model 

To reduce such disadvantages mentioned above Bollerslev, Engle, and Wooldridge 

(1988) proposed diagonal vech model in which the coefficient matrices     and    are 

assumed diagonal. In this case the number of parameters is reduced to (    

 ) (   )  ). For example, if       and     then the number is 9, and if N=3 

it is 8. Furthermore, in this case the necessary and sufficient conditions for the positive 

definiteness of    are obtained by Bollerslev, Engle, and Nelson (1994). The variance 

equation (3) is simplified as follows: 
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2.3. BEKK model 

To ensure the positive definiteness of    Engle and Kroner (1995) proposed a 

following model called as Baba-Engle-Kraft-Kroner (BEKK) model. 

 

        ∑ ∑    
  

   
 
           

     ∑ ∑    
        

 
   

 
    (4) 

 

where           are N×N coefficient matrices, C is a lower triangular matrix.  Although 

this decomposition of the constant term can ensure the positive definiteness of   , which 

is the advantage of this model, the number of parameters is quite large. Because of this, 

estimation of this model is often infeasible for a large model.  When K=1 this model is 

written as  

 

                  
           (5) 

 

In this case the number of parameters is np (   )    (   )  . If       

and N=2, then       , and       for N=3. If     it may not be feasible to 

estimate this model. To reduce number of parameters it is common and popular to 

assume that the coefficient matrices A, B are diagonal. This model is called Diagonal 

BEKK model (Engle and Kroner (1995)). In this model np=(   )   (   )  . If 

      and N=2, then     , and       for N=3. For small size Diagonal BEKK 

model the calculation is feasible. However, even in Diagonal BEKK model, np will be 

large when N is not small. For example, np=35 when       and N=5.  

 

We illustrate several versions of (5) for a simple case N=2 and K=1: 

Unrestricted BEKK. In this case the variance covariance matrix    [
          

          
] is 

expressed as  
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where     is positive definite by construction.  

 

 

Diagonal BEKK is expressed as  
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where       in these variance covariance equations only depend on their own lagged 

values        . 

  

Engle and Kroner (1995) shows that the diagonal vech and the diagonal BEKK are 

equivalent as follows: By stacking the diagonal elements of A and B of the diagonal vech 

model, i.e., 

  (           )
    (           )

  
and write  

                 
           

 

then it is easy to see that     (  ) is identical to the diagonal vech. 

 

There are many other types of multivariate GARCH model. They are surveyed, for 

example, in Bauwens, L., S. Laurent and J. V. K. Rombouts (2006) and Silvennoinen and 

Terasvirta (2009).   
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Bollerslev, Engle, and Wooldridge (1988) introduced a restricted version of the general 

multivariate vec model of GARCH with following representation: 

 

               
         

 

where the operator   is the Hadamard product and   is Kronecker Product. To ensure 

the positive semi-definiteness (PSD) there are several ways for specifying coefficient 

matrices. One example is to specify  ,  , and B as products of Cholesky factorized 

triangular matrices. Such parameterization will be used in the latter section in this paper. 

2.4. Log-likelihood function of vech-GARCH 

If the distribution of errors    is a multivariate normal, then the log-likelihood function of 

(1) is given by 

 

 ∑   ( ) 
      

 

 
∑   |  |  

 

 
∑   

   
    

 
   

 
    (6) 

 

In calculating MLE we have to invert    at every time t. This is computationally tedious 

when T and N are not small. Furthermore    is often noninvertible.  

 

3. VEC REPRESENTATION OF VAR MODEL  

We consider M-variate and k-th order vector autoregressive time series    

=[              ]  

  

                        (7) 

 

This model is called Vector Autoregressive (VAR) Model. The subscript t denotes time: 

         . The errors    are assumed to follows iid M-dimensional multivariate 

normal distribution N(0,  ). Note that   does not depend on time t. Later in this paper we 

consider the time dependent case, i.e.,   . Now by introducing a     matrix   defined 

by 

 

             

We can rewrite (7) as  

 

                        (8) 
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where, 

      = [                    ]
 
  a vector of first order lagged of   . 

     = [                       ] : a vector of first difference of    at time t. 

C
0
  =    

    
    

    
   : a vector of constant terms. 

    =            : a vector of disturbance errors which is assumed iid M-dimensional 

multivariate normal distribution N(0,  ). 

 

In what follows we consider a case in which all elements in    are I(1). In this case as the 

left hand side variables     are sationary I(0) the right hand side of (8) should be also 

stationary. To ensure the stationarity of the right hand side of (8), the rank of the 

coefficient matrix   is less than M or rank( )<M. The reason is as follows: if rank( )=M 

then there exists     and the equation (8) can be solved for I(1) variable      as a linear 

combination of stationary variables     and      . This is a contradiction. This is 

because why rank( )<M. Under this rank condition   can be decomposed as follows: 

 

     

where 

A =               : vector of coefficients in cointegrating equation (loading 

matrix that contains adjustment parameters) and, 

B =               : a vector of cointegrating coefficient, 

   = [

       

   
       

]: a M by M matrix, 

 

where       is assured to be stationary (Granger‟s representation theorem). The 

stationarity of       means that a linear combination of elements in      is stationary, in 

such elements are called as co-integrated and B is called as co-integration vector. The 

coefficient matrix A is called as loading vector because A conveys cointegrated variables 

to the system. 
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4. VECTOR ERROR CORRECTION WITH GARCH ERRORS (VEC-GARCH 

MODEL) 

 

4.1. VECM with BEKK errors 

So far we have considered the standard Vector Error Correction Model (VECM), where a 

set of time series is nonstationary at level, but stationary at their first differences and 

        (   )   Matrix   represents the long run relationship between the variables in 

Equation (8) and Johansen (1988) proposed a maximum likelihood estimation of (8) for 

the case of the rank of matrix    , where      .  

 

In what follows, we relaxed the assumption of homoscedasticity of the errors. Instead, we 

assume that    has zero mean and time dependent variance-covariance matrix of    that 

has the BEKK GARCH structure as given by (6): 

 

                  
         

    

 

4.2. SUR representation 

VEC model with GARCH errors can be represented by Seemingly Unrelated Regression 

(SUR) model as follows. SUR representation of VEC model seems to be worthwhile to 

consider.  For simplicity we consider three-equation VEC model such as: 
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for t=1, 2, …, n. 

 

Alternatively this system can be written as 
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where    and     are the ith row of   and   respectively, i.e., 
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Defining new matrices X and   by 

 

             and       
    

    
  , 

 

the 3-equation VEC model (8) can be written as SUR model as follows: 
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]. 

 

We assume that  ( )   ,  (       )    for    , and the variance and covariance 

 (   
 )       and  (       )       follow MGARCH(1,1).  Let us define    (   ), or in 

the complete form: 
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where,     is a n×n diagonal matrix where its main diagonal elements are elements of n-

vector of       and zeros on the off diagonal elements and,         , i.e., 
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Thus we have 
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where       follow multivariate MGARCH(1,1) process.  

After obtaining an estimate  ̂, we have FGLS, 

 

 ̂      ̂         ̂    . 
 

Note that inverting a large and sparse matrix   often causes computational problems such 

as memory size, computer time, and inaccurate numerical results. To avoid those 

problems we propose the following algorithm: After estimating MGARCH process we 

construct a relatively small matrix   ̂  and its inverse  ̂ 
   at each time t such that,  

    

  ̂  [

 ̂     ̂     ̂    

 ̂     ̂     ̂    

 ̂     ̂     ̂    

]       ̂ 
   [

 ̂ 
   ̂ 

   ̂ 
  

 ̂ 
   ̂ 

   ̂ 
  

 ̂ 
   ̂ 

   ̂ 
  

] (10) 

 

where   ̂  and  ̂     are estimated variance covariance of MGARCH.  

 

Replacing  ̂     with  ̂ 
  
 in  ̂  we have easily obtain  ̂   without inverting a large matrix 
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5. MONTE CARLO SIMULATION 

 

5.1 Data generating Process (DGP) 

Monte Carlo simulation is carried out by generating artificial data of three series. The 

data generating process (DGP) is repeated for 1000 times. We run the simulation for the 

number of observations n : 100, 300 and 500.  For removing the initial value effect, we 

generate 2n observations for each series and remove the first half of the generated data in 

each simulation run. The true model for generating the data is specified as follows: 

 

                   (11) 

 

or in stacked model it can be restated as, 
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where    follow GARCH process,     (    ) and    follows the diagonal BEKK: 

             
              

with 
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  ,    are transformed matrices of     and     where where   and   are [0.3,0.6,0.2], 

[0.3,0.5,0.4] respectively. M* is a transformed matrix of M‟M where M is a diagonal 

matrix with its diagonal elements are [0.5,0.3,0.7]. Equivalently, the variance-covariance 

equations are as follow: 
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Equation (11) can be rewritten as Vector Error Correction Model (VECM): 

 

                     (12) 

 

where         and     . The true values of P and Q are set as follow: 

 

  [
     
     

       
]  and    [

     
     

       
] 

 

thus   [
   
   
      

] which can be decomposed into loading vector        and 

cointegrating vector         . 

 

Before we generate   , we have to generate    ~N(0,   ) as follows. 

 

Step 1. Generate    [

   

   

   

]  (   ) 

Step 2. Generate    using Diagonal BEKK model from    

Step 3. Transform    to    by applying Cholesky Decomposition:        , where 

   is lower triangular matrix obtained from decomposing        
 . 

By construction, the positive definiteness (PD) of     is assured.  

  

5.2. Estimation Strategy 

 

Under the above DGP we carried out Monte Carlo simulation for the following five 

cases:  

Case 1 (OLS): We estimate parameters equation by equation in equation (9) by OLS 

without considering GARCH error structure and obtain the followings: 

 

          ̂ 
       ̂ 

   ̂  

          ̂ 
       ̂ 

   ̂  

          ̂ 
       ̂ 

   ̂  



14 

 

 

 

Case 2 (VECM): We estimate parameters in equation (12) by VECM system equation 

without considering GARCH error structure and obtain the followings: 

 

     ̂      ̂       ̂  
 

Case 3 (FGLS-OLS-GARCH/FOLSH): First we calculate OLS residuals  ̂  for each 

equations without considering GARCH error structure as in Case 1.  Next, we use  ̂  for 

obtaining variance covariance matrix  ̂  and  ̂ 
   in the diagonal BEKK model. Having 

 ̂  and  ̂ 
   in hand we can construct  ̂ and  ̂   to have feasible generalized least square 

(FGLS) estimator. 

 

Case 4 (FGLS-VECM-GARCH/FVECH): We use VECM system equations as in Case 

2 for estimating  ̂. First we obtain each residual  ̃  from VECM in Case 2.  Next, we use  

 ̃  for obtaining variance covariance matrix  ̂  and  ̂ 
   in the diagonal BEKK model. 

Having  ̂  and  ̂ 
   in hand we can construct  ̂ and  ̂   to have feasible generalized 

least squre (FGLS) estimator. 

 

Case 5 (MLE): We estimate all parameters in the mean equation (12) and the diagonal 

BEKK variance equation (5) by MLE and obtain the estimated system as follows: 

 

Mean equation:      ̂      ̂       ̂  

Variance equation:  ̂   ̂ ̂   ̂  ̂    ̂   
  ̂   ̂  ̂    ̂  

or equivalently the variance-covariance equations are as follow: 

 

 ̂     ̂  
   ̂  

  ̂    
   ̂  

  ̂       

 ̂     ̂   ̂   ̂   ̂      ̂   ̂   ̂       

 ̂     ̂   ̂   ̂   ̂      ̂   ̂   ̂       

 ̂     ̂  
   ̂  

  ̂    
   ̂  

  ̂       

 ̂     ̂   ̂   ̂   ̂      ̂   ̂   ̂       

 ̂     ̂  
   ̂  

  ̂    
   ̂  

  ̂       

 

In estimating the parameters we maximize log likelihood function as specified in 

Equation (6). We run the simulation in Eviews program (version 7.2). For Case 5, in 
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order to starting the iteration, the initial values of VECM parameters (the mean equation) 

were set based on single OLS equations as in Case 1. Meanwhile, the initial values for 

MGARCH parameters in the variance equations were set based on univariate GARCH. 

 

5.2. Simulation Results  

The main estimation methods under investigation in this paper are FGLS-based estimator 

(FOLSH and FVECH) and Maximum Likelihood Estimator (MLE). These strategies are 

taking into account the presence of MGARCH error structure. Presumably, the strategies 

are expected to outperform the other strategies that neglect the MGARCH error structure 

(OLS and VECM). Summary of simulation results is presented in Table 1. From the 

table, we observed that estimation methods FOLSH, FVECH, and MLE seem to 

outperform the other methods (OLS and VECM); the mean of the estimated parameter 

from 1000 times simulation run tends to be closer to its true value in most cases. 
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Table 1: Parameter Estimates from Monte Carlo Simulation 
n=100 

 True Value 

OLS VECM FOLSH FVECH MLE 

Parameters Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. 

 ̂   0.000 -0.048 0.082 -0.011 0.074 -0.043 0.082 -0.042 0.081 -0.038 0.078 

 ̂   0.000 -0.010 0.083 -0.011 0.074 -0.008 0.083 -0.008 0.084 -0.007 0.079 

 ̂   0.000 0.005 0.040 0.005 0.037 0.003 0.040 0.003 0.040 0.003 0.037 

 ̂   -0.300 -0.272 0.127 -0.279 0.127 -0.275 0.129 -0.275 0.131 -0.282 0.122 

 ̂   0.000 -0.001 0.082 0.018 0.132 -0.002 0.085 -0.001 0.084 -0.002 0.079 

 ̂   0.000 0.001 0.049 -0.520 0.149 0.001 0.052 0.001 0.050 0.001 0.048 

 ̂   0.000 -0.017 0.099 -0.019 0.090 -0.009 0.092 -0.009 0.094 -0.010 0.076 

 ̂   0.000 -0.072 0.109 -0.020 0.091 -0.051 0.098 -0.047 0.102 -0.040 0.084 

 ̂   0.000 0.009 0.047 0.010 0.045 0.004 0.043 0.004 0.049 0.005 0.036 

 ̂   0.000 0.016 0.133 0.000 0.080 0.010 0.127 0.010 0.132 0.009 0.103 

 ̂   -0.700 -0.647 0.101 -0.668 0.100 -0.656 0.095 -0.660 0.095 -0.670 0.087 

 ̂   0.000 -0.003 0.057 -1.018 0.105 -0.004 0.052 -0.003 0.053 -0.001 0.045 

 ̂   1.000 1.026 0.101 1.025 0.102 1.027 0.109 1.026 0.109 1.026 0.109 

 ̂   1.000 1.025 0.101 1.026 0.103 1.027 0.110 1.026 0.112 1.025 0.114 

 ̂   -0.500 -0.512 0.048 -0.512 0.049 -0.513 0.052 -0.513 0.053 -0.513 0.052 

 ̂   -0.500 -0.520 0.149 0.000 0.049 -0.521 0.158 -0.523 0.157 -0.522 0.161 

 ̂   -1.000 -1.017 0.106 -0.003 0.056 -1.018 0.114 -1.016 0.115 -1.018 0.117 

 ̂   -0.100 -0.094 0.094 -0.093 0.066 -0.095 0.069 -0.093 0.071 -0.095 0.070 

n=300 

  

OLS VECM FOLSH FVECH MLE 

Parameters True Value Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. 

 ̂   0.000 -0.021 0.042 -0.007 0.039 -0.019 0.043 -0.019 0.043 -0.016 0.037 

 ̂   0.000 -0.006 0.042 -0.007 0.039 -0.005 0.042 -0.005 0.042 -0.004 0.038 

 ̂   0.000 0.004 0.020 0.003 0.020 0.003 0.021 0.003 0.020 0.002 0.019 

 ̂   -0.300 -0.281 0.073 -0.285 0.074 -0.284 0.074 -0.285 0.073 -0.287 0.073 

 ̂   0.000 0.004 0.043 0.005 0.078 0.003 0.043 0.003 0.044 0.001 0.041 

 ̂   0.000 0.000 0.028 -0.502 0.088 0.000 0.028 0.000 0.028 0.001 0.025 

 ̂   0.000 -0.004 0.054 -0.004 0.052 0.000 0.045 -0.001 0.045 -0.001 0.035 

 ̂   0.000 -0.021 0.055 -0.004 0.052 -0.011 0.046 -0.011 0.046 -0.008 0.035 

 ̂   0.000 0.002 0.026 0.002 0.026 0.000 0.022 0.000 0.022 0.000 0.017 

 ̂   0.000 0.005 0.078 0.004 0.043 0.001 0.070 0.002 0.069 0.002 0.054 

 ̂   -0.700 -0.683 0.057 -0.690 0.057 -0.688 0.052 -0.689 0.051 -0.692 0.040 

 ̂   0.000 -0.001 0.033 -1.002 0.059 -0.001 0.028 0.000 0.028 0.000 0.021 

 ̂   1.000 1.003 0.056 1.003 0.056 1.002 0.055 1.002 0.056 1.002 0.057 

 ̂   1.000 1.003 0.056 1.004 0.056 1.003 0.056 1.003 0.056 1.002 0.057 

 ̂   -0.500 -0.502 0.027 -0.502 0.027 -0.502 0.027 -0.502 0.027 -0.501 0.028 

 ̂   -0.500 -0.502 0.088 0.000 0.028 -0.501 0.089 -0.501 0.089 -0.501 0.088 

 ̂   -1.000 -1.002 0.059 -0.001 0.032 -1.001 0.060 -1.002 0.059 -1.000 0.060 

 ̂   -0.100 -0.096 0.037 -0.096 0.037 -0.096 0.038 -0.096 0.038 -0.096 0.038 
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Table 1 (Continued): Parameter Estimates from Monte Carlo Simulation 
n=500 

  

OLS VECM FOLSH FVECH MLE 

Parameters True Value Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. 

 ̂   0.000 -0.010 0.033 -0.002 0.032 -0.010 0.033 -0.009 0.033 -0.007 0.029 

 ̂   0.000 -0.001 0.033 -0.002 0.031 -0.001 0.034 -0.001 0.034 0.000 0.029 

 ̂   0.000 0.001 0.016 0.001 0.016 0.001 0.016 0.000 0.016 0.000 0.014 

 ̂   -0.300 -0.297 0.056 -0.299 0.056 -0.296 0.059 -0.297 0.057 -0.297 0.050 

 ̂   0.000 0.000 0.032 0.003 0.060 0.000 0.032 0.000 0.032 0.000 0.029 

 ̂   0.000 -0.001 0.022 -0.506 0.066 -0.001 0.022 -0.001 0.022 0.000 0.019 

 ̂   0.000 -0.004 0.040 -0.004 0.040 -0.002 0.035 -0.002 0.035 -0.001 0.026 

 ̂   0.000 -0.015 0.041 -0.004 0.040 -0.009 0.036 -0.009 0.036 -0.005 0.027 

 ̂   0.000 0.002 0.020 0.002 0.020 0.001 0.017 0.001 0.017 0.000 0.013 

 ̂   0.000 0.003 0.060 0.001 0.031 0.001 0.053 0.001 0.052 0.002 0.043 

 ̂   -0.700 -0.691 0.044 -0.695 0.044 -0.694 0.038 -0.695 0.037 -0.696 0.029 

 ̂   0.000 0.001 0.025 -1.002 0.042 0.001 0.022 0.000 0.021 0.000 0.016 

 ̂   1.000 1.004 0.039 1.004 0.039 1.004 0.040 1.003 0.040 1.005 0.044 

 ̂   1.000 1.003 0.040 1.003 0.040 1.003 0.041 1.002 0.041 1.004 0.043 

 ̂   -0.500 -0.502 0.020 -0.502 0.020 -0.502 0.020 -0.501 0.020 -0.502 0.022 

 ̂   -0.500 -0.506 0.066 -0.001 0.022 -0.504 0.066 -0.504 0.066 -0.506 0.072 

 ̂   -1.000 -1.002 0.042 0.001 0.025 -1.001 0.043 -1.001 0.043 -1.001 0.045 

 ̂   -0.100 -0.099 0.028 -0.099 0.028 -0.099 0.028 -0.099 0.028 -0.099 0.031 

 

 

OLS and VECM under the heteroscedasticity condition still provide us an unbiased 

estimator, but their standard deviations are larger than the methods that assume 

MGARCH error structure. Table 2 shows that MLE, FOLSH, and FVECH are more 

efficient than OLS and VECM. It shows that methods ignoring the MGARCH error 

structure would result in less efficient estimator. All methods are consistent estimator and 

the efficiency measured by the Mean Squared Error (MSE) are improving when larger 

sample size is used.  

 

MLE is still the most efficient estimator as shown by the least average MSE in every 

sample size. However, MLE become computationally demanding when number of 

parameter is large. Table 2 shows that FGLS-based estimator (FOLSH and FVECH) 

perform better than OLS and VECM and only slightly inferior to MLE. It suggests that 

FGLS-based estimator could be useful in overcoming computation burden of the MLE. 

FGLS-based estimator needs to compute inverse of  ̂ which is a very large and sparse 

matrix, but the inversion of that matrix may cause computational problems as mentioned 

above in Section 4. Such problems can be solved by the suggested method in that section. 

The algorithm for matrix inversion in most statistical software is still limited only for 
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matrix in small dimension. We already tried to compute  ̂   using standard command in 

EViews and MATLAB in our simulation, while n<100 FGLS-based estimators perform 

fairly good that comparable to MLE. However, when n becomes larger (i.e. n=300 and 

n=500), the FGLS-based estimator become poorly inefficient since it produces extreme 

values for the estimated parameters. All estimated parameters from FGLS-based 

estimators presented in this paper are based on our matrix inversion procedure. The 

results based on standard matrix inversion in statistical software are not presented to save 

space.  

Table 2: Average of Mean Squared Error 

 
OLS VECM FOLSH FVECH MLE 

n=100 0.00970 0.15012
 

0.00936**
 

0.00958* 0.00834*** 

n=300 0.00280 0.14180
 

0.00255*
 

0.00253** 0.00218*** 

n=500 0.00154 0.14104
 

0.00144*
 

0.00141** 0.00127*** 

Note: *** The best estimator, ** 2nd best estimator, * 3rd best estimator 

 

Figure 1: Empirical Distribution Histogram of  ̂   when n=500 

 
Note: The true value for  ̂   is 0 as shown by the vertical dashed line 

 

Figures 1 compares the distribution of  ̂   with n=500. The figures show that MLE is the 

most efficient estimator. FOLSH and FVECH have very similar efficiency as shown by 

the empirical distribution histogram and relatively are more efficient than OLS and 

VECM. The figure also shows that OLS estimator is biased to the left although the 

sample size is large (n=500). 
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Figure 2: Empirical Distribution Histogram of  ̂   by MLE 

 
Note: The vertical dashed line indicates the true value of the parameter 

 

Figure 3: Empirical Distribution Histogram of  ̂   by FOLSH 

 
Note: The vertical dashed line indicates the true value of the parameter.  
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Figure 4: Empirical and Theoretical t-Distribution Histogram of  ̂   by FOLSH and MLE 

 
Note: degree of freedom = nm-k, where n=number observation, m=number of equation (3), and k=number of parameter (18) 

 

  

0.000

0.100

0.200

0.300

0.400

-5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00

D
e

n
si

ty

Pi(22), FOLSH, n=100

0.000

0.100

0.200

0.300

0.400

-4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00

D
e

n
si

ty

Pi(22), FOLSH, n=300

0.000

0.100

0.200

0.300

0.400

-5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00

D
e

n
si

ty

Pi(22), FOLSH, n=500

0.000

0.100

0.200

0.300

0.400

0.500

-5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00

D
e

n
si

ty

Pi(22), MLE, n=100

0.000

0.100

0.200

0.300

0.400

0.500

-6.00 -5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00

D
e

n
si

ty

Pi(22), MLE, n=300

0.000

0.100

0.200

0.300

0.400

0.500

-14.00 -12.00 -10.00 -8.00 -6.00 -4.00 -2.00 0.00 2.00 4.00 6.00

Empirical t-dist. Theoretical t-dist, df=(n.m - k)

D
e

n
si

ty

Pi(22), MLE, n=500



21 

 

 

 

Table 3: Average of Rejection Rate of Null Hypothesis* Test at 5 Percent Significance Level 
n=100  ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂   Average 

OLS 0.151 0.127 0.127 0.142 0.119 0.099 0.135 0.203 0.128 0.118 0.171 0.102 0.107 0.100 0.105 0.095 0.113 0.104 0.125 

VECM 0.111 0.107 0.111 0.142 0.110 0.969 0.136 0.131 0.134 0.117 0.155 1.000 0.139 0.086 0.100 1.000 1.000 0.113 0.315 

FOLSH 0.024 0.071 0.072 0.097 0.080 0.071 0.061 0.032 0.086 0.088 0.138 0.059 0.080 0.077 0.028 0.035 0.035 0.060 0.066 

FVECH 0.021 0.070 0.079 0.099 0.081 0.062 0.052 0.027 0.073 0.092 0.126 0.062 0.085 0.082 0.028 0.040 0.035 0.063 0.065 

MLE  0.008  0.031  0.033  0.037  0.028  0.026  0.033  0.022  0.043  0.043  0.070  0.037  0.049  0.043  0.015  0.018  0.012   0.023   0.032  

                    n=300  ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂   Average 

OLS 0.143 0.111 0.097 0.154 0.093 0.098 0.146 0.165 0.140 0.110 0.151 0.100 0.103 0.113 0.111 0.122 0.112 0.108 0.121 

VECM 0.099 0.099 0.099 0.157 0.111 1.000 0.138 0.137 0.138 0.090 0.147 1.000 0.119 0.105 0.104 1.000 1.000 0.115 0.314 

FOLSH 0.030 0.054 0.072 0.105 0.068 0.055 0.061 0.030 0.064 0.069 0.085 0.054 0.049 0.056 0.053 0.056 0.057 0.060 0.060 

FVECH 0.026 0.048 0.075 0.102 0.070 0.062 0.063 0.031 0.062 0.075 0.087 0.053 0.049 0.055 0.051 0.057 0.054 0.062 0.060 

MLE  0.015  0.030  0.041  0.075  0.043  0.038  0.045  0.026  0.053  0.071  0.077  0.042  0.038  0.042  0.048  0.049  0.053  0.046   0.046  

                    n=500  ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂   Average 

OLS 0.122 0.122 0.110 0.142 0.083 0.101 0.135 0.153 0.134 0.111 0.148 0.109 0.096 0.095 0.094 0.108 0.096 0.104 0.115 

VECM 0.110 0.110 0.110 0.147 0.114 1.000 0.137 0.137 0.137 0.089 0.156 1.000 0.106 0.087 0.091 1.000 1.000 0.106 0.313 

FOLSH 0.031 0.073 0.072 0.074 0.045 0.055 0.061 0.037 0.076 0.075 0.072 0.069 0.052 0.050 0.036 0.044 0.041 0.040 0.056 

FVECH 0.038 0.077 0.067 0.073 0.042 0.053 0.065 0.040 0.070 0.071 0.065 0.063 0.052 0.049 0.036 0.045 0.044 0.041 0.055 

MLE 0.023  0.047  0.051  0.062  0.046  0.048  0.061  0.040  0.059  0.086  0.054  0.055  0.047  0.044  0.038  0.039  0.039  0.043  0.049 

*The null hypothesis: the estimated parameter = its true value, the alternative hypothesis: the estimated parameter   its true value
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Figure 2 and 3 show example of empirical distribution of the estimated parameter  ̂   

by MLE and FOLSH respectively, for n=100, 300, and 500. Those figures suggest 

that both ML estimator and FOLSH are consistent estimators as the estimated 

parameter more converge to the true value when the sample size is larger. Both MLE 

and FOLSH tend to be unbiased when sample size is large.  

 

Figure 4 shows example of empirical t-statistic distribution for  ̂  . From the figures, 

both FOLSH and MLE tend to conform to student-t distribution when larger sample 

size is used. The empirical distribution for  ̂   estimated by FVECH is very similar to 

that by FOLSH. Table 3 shows that rejection rate of null hypothesis that each 

parameter is equal to its true value is also close to the significance level (0.05) for 

parameter estimated by FOLSH, FVECH, and MLE. From the table it is also apparent 

that estimators that do not consider multivariate GARCH error structure (OLS and 

VECM) has higher rejection rate compares to those of estimators that consider the 

error structure (FOLSH, FVECH, and MLE). These findings show us that neglecting 

the presence of multivariate GARCH error structure will increase the rejection rate or 

the type I error. 

 

5. EMPIRICAL APPLICATION 

Weekly data from July 1997 until July 2011 of US S&P500, Japan Nikkei225 and 

Malaysia KLSE composite index are collected as a dataset for our model (n=732). 

The indexes are stated in logarithmic and are measured in US Dollar. Since they are 

in log index, their first order differences can be regarded as stock market return of the 

respective markets. 

 

Unit root test indicates that the three time series are non-stationary at level, but they 

are stationary at their first difference. The Augmented Dickey Fuller (ADF) statistic 

( -stat.) for data in level indicates the null hypothesis that the series has unit root 

cannot be rejected at 10 percent significance level or less. Meanwhile, the  -stat. for 

the respective series in the first order difference significantly rejects the null 

hypothesis of unit root at one percent significance level. 
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Table 4:  Unit Root Test 

 

Level 1st Differences 

Unit Root Test ADF  -stat. P-Value ADF  -stat. P-Value 

S&P500 -2.4618 0.1254 -29.7881 0.0000 

Nikkei225 -2.4258 0.1349 -27.8684 0.0000 

KLSE -0.8080 0.8158 -28.1092 0.0000 

Null Hypothesis: Series has unit root 
   

Johansen‟s cointegration test was performed for the dataset, the results, as presented 

in Table 5, show that one cointegrating equation is found from tests based on both 

Trace and Maximum Eigenvalue method. 

 

Estimation of VECM with one cointegrating equation is shown in Table 6, where Y1, 

Y2, and Y3 correspond to log of S&P500, Nikkei225, and KLSE index respectively. 

From the table, it shows that coefficients of error correction for cointegrating equation 

are all significant to show that the stock markets have long run price relationship. In 

the VAR part, lagged S&P500 return has significant effect to itself and to both 

Japanese and Malaysian stock market returns. The results indicate that US stock 

market is still a very dominant market that shares its greater influence to other 

markets. 

 

In addition, the significant VECM coefficients also indicate that past information 

(lagged variables of both price and return) can explain the present stock market 

returns. It implies that the stock markets are neither informationally efficient nor 

perfectly integrated. The importance of past information may be used for setting 

arbitrage strategies in the markets to exploit the market inefficiency. 
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Table 5:  Johansen Cointegration Test 

Unrestricted Cointegration Rank Test (Trace) 

 Hypothesized Trace 0.05 

 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None * 0.0436 38.0006 29.7971 0.0046 

At most 1 0.0058 5.4141 15.4947 0.7634 

At most 2 0.0016 1.1569 3.8415 0.2821 

Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

Hypothesized Max-Eigen 0.05 

 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None * 0.0436 32.5865 21.1316 0.0008 

At most 1 0.0058 4.2572 14.2646 0.8313 

At most 2 0.0016 1.1569 3.8415 0.2821 

Trace and Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
* denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values 

  

 

Table 6:  Vector Error Correction Model (VECM) 
Coint.Eq. Coef. 

  Y1t-1 1.000 

  Y2t-1 -0.682 

  

 

(0.090) 

  Y3t-1 -0.024 

  

 

(0.054) 

  C -3.700 

  E.C. Eq. ∆Y1t ∆Y2t ∆Y3t 

Coint.Eq. -0.024 0.027 0.040 

 

(0.009) (0.012) (0.015) 

∆Y1t-1 -0.095 0.214 0.174 

 

(0.041) (0.053) (0.069) 

∆Y2t-1 -0.007 -0.076 0.032 

 

(0.032) (0.042) (0.055) 

∆Y3t-1 0.012 -0.047 -0.076 

 

(0.024) (0.031) (0.040) 

C 0.000 -0.001 0.000 

 

(0.001) (0.001) (0.002) 

Standard Error in Parenthesis 
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The residuals of estimated VECM show a non-homoscedastic structure as it is shown 

in Figure 5. The residual of VECM can be regarded as a market shock or the 

unexpected return, and from the figure we can observed that during period of 1999-

2002 and 2008-2009 the volatility of the US residuals were higher compared to that in 

the other periods. The two sub-periods are known as the burst of dot-com bubble and 

the collapse of financial institutions in the US market. The pattern of the Japan 

residuals is less clear to be connected with some events; however, it is clear that the 

residuals are also not homoscedastic. Meanwhile, the residuals plot of Malaysian 

stock market returns show that higher volatility is detected during the Asian financial 

crisis in 1997-1998 and also during the US financial turmoil in late 2008 until 2009.  

 

The similar pattern of residuals during a crisis period, i.e. during the collapse of 

Lehman Brothers in US, indicates the presence of volatility spillover from US to other 

markets, and thus it become evidence of the correlated structure of the residuals. This 

phenomenon is often seen in financial market. The latter property of the residuals 

becomes a motivation to apply SUR type model. 

 

Residuals from each single OLS model are also computed, the results are similar to 

those of VECM‟s residuals that they indicate that the residuals are heteroscedastic. 

The residuals are then used in estimating  ̂  by Diagonal BEKK. Having the 

variance-covariance series, we proceed to the next step for constructing matrix  ̂ and 

used it to obtain FGLS estimators. 
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Figure 5:  Residuals of VECM 
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Figure 6: Estimated Conditional Variance-Covariance 

 
 (a) Conditional Variance 

 
(b) Conditional Covariance 

 

The FGLS estimators, the restated VECM (without GARCH), OLS, and MLE 

estimated parameters are shown in Table 7. As shown in the table, although the sign 

and value of the estimated parameters are very similar among the various estimation 

methods, but the probability of significance are sometime different. Based on the data 

properties shown in Figure 5 and 6, the GARCH error structure does exists. And 

based on the simulation results, estimation methods that take into account the 

GARCH structure are more efficient than those that ignore the structure. Therefore, in 

the empirical example, the use of such methods (OLS and VECM) might produce 
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wrong conclusion regarding the significance of the estimated parameters. For 

example,  ̂   estimated by OLS (and VECM) is significantly different from zero, but 

it is not significant when it is estimated by FOLSH, FVECH, and MLE.  It means that 

when we estimate the parameter using method that neglecting the MGARCH error 

structure we would conclude that lagged of Nikkei225 Index (Japanese stock prices) 

affects Malaysia KLSE returns (Malaysian stock returns), while we should not. 

 

Table 6: Estimated Parameters of OLS, VECM, FOLSH, FVECH, and MLE 

Estimated 

Parameter 

OLS VECM FOLSH FVECH MLE 

Coef. S.E.  Coef. S.E.  Coef. S.E.  Coef. S.E.  Coef. S.E.  

 ̂ 
  0.139 0.047 

** 
0.089 # 

 
0.138 0.045 

** 
0.195 0.045  

** 
0.139

 
0.038

 ** 

 ̂   -0.028 0.009 
** 

-0.024 # 
 

-0.029 0.010 
** 

-0.040  0.010  
** 

-0.024
 

0.007
 ** 

 ̂   0.014 0.007 
* 

0.016 # 
 

0.014 0.004 
** 

0.019  0.004  
** 

0.008
 

0.004
  

 ̂   -0.001 0.003 
 

0.001 # 
 

0.000 0.000 
** 

0.000  0.000  
** 

-0.001
 

0.002
  

 ̂   -0.093 0.041 
* 

-0.095 0.041 
* 

-0.091 0.159 
 

-0.090  0.061  
 

-0.106
 

0.040
 ** 

 ̂   -0.006 0.032 
 

-0.007 0.032 
 

0.007 0.010 
 

0.008  0.005  
 

-0.004
 

0.024
  

 ̂   0.013 0.024 
 

0.012 0.024 
 

0.038 0.028 
 

0.038  0.017  
* 

0.035
 

0.015
 * 

 ̂ 
  -0.023 0.061 

 
-0.102 # 

 
-0.017 0.025 

 
0.028  0.016  

* 
-0.006

 
0.048

  

 ̂   0.020 0.012 
 

0.027 # 
 

0.015 0.016 
 

0.005  0.003  
* 

0.019
 

0.009
 * 

 ̂   -0.024 0.009 
** 

-0.019 # 
 

-0.020 0.031 
 

-0.015  0.009  
* 

-0.023
 

0.006
 ** 

 ̂   -0.001 0.003 
 

-0.001 # 
 

0.001 0.002 
 

0.001  0.000  
* 

-0.003
 

0.003
  

 ̂   0.218 0.053 
** 

0.214 0.053 
** 

0.259 0.086 
** 

0.261  0.066  
** 

0.200
 

0.042
 ** 

 ̂   -0.075 0.042 
 

-0.076 0.042 
 

-0.094 0.045 
* 

-0.095  0.031  
** 

-0.050
 

0.038
  

 ̂   -0.046 0.031 
 

-0.047 0.031 
 

-0.056 0.037 
 

-0.057  0.023  
** 

-0.026
 

0.022
  

 ̂ 
  -0.129 0.079 

 
-0.147 # 

 
-0.109 0.272 

 
-0.052  0.035  

 
-0.017

 
0.050

  

 ̂   0.040 0.016 
* 

0.040 # 
 

0.026 0.041 
 

0.011  0.007  
* 

0.007
 

0.011
  

 ̂   -0.026 0.011 
* 

-0.027 # 
 

-0.014 0.029 
 

-0.004  0.003  
 

-0.003
 

0.008
  

 ̂   -0.005 0.004 
 

-0.001 # 
 

-0.001 0.001 
 

-0.001  0.001  
 

-0.003
 

0.004
  

 ̂   0.173 0.069 
* 

0.174 0.069 
* 

0.246 0.119 
* 

0.251  0.082  
** 

0.223
 

0.036
 ** 

 ̂   0.031 0.055 
 

0.032 0.055 
 

0.006 0.003 
* 

0.002  0.001  
** 

0.011
 

0.030
  

 ̂   -0.073 0.040 
 

-0.076 0.040 
 

-0.067 0.041 
 

-0.061  0.023  
** 

-0.026
 

0.037
  

** significant at 0.01 

* significant at 0.05 

The Standard error marked by # indicates that the coefficient is computed from loading vector and 

adjustment vector in the error correction equations, the respective standard error for these parameters 

are shown in Table 5.  

 

 

6. CONCLUDING REMARKS 

The standard Vector Error correction model (VECM), which is based on normality 

assumption of error term, is often applied to analyze the real financial time series. 

However, as shown in the section 5 it is often seen that residuals of this model seem 
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to follow GARCH errors process. From this experience we extend the standard 

VECM to include GARCH error process. We call such model as VEC-GARCH 

model. Although the maximum likelihood (ML) estimator is known as the most 

efficient estimator under the normality assumption, ML estimation is computationally 

demanding when a model to be estimated is not small. To overcome these 

disadvantages and to reduce computational burden of ML estimator we consider the 

generalized least square estimator (GLS) instead of ML estimator. GLS is relatively 

free from the distributional assumptions.   

 

In this paper we mainly concerns with the GLS representation, the algorithm of it, and 

the properties of it, we have examined the performance of GLS and MLE in VEC-

GARCH model by Monte Carlo simulation and the applicability of it by real data 

analysis of the financial time series. The Monte Carlo simulation naturally has shown 

that MLE is still better than the FGLS.  However FGLS-based estimators that also 

consider GARCH error structure are also more efficient than estimators that neglect 

the error structure. The performance of MLE and FGLS-based estimator in our 

simulation are only slightly different, yet both are better estimators compare to the 

OLS and VECM. Thus, the suggested FGLS-based estimator may overcome the 

disadvantages of MLE, especially in reducing the computational burden.  

 

Our suggested method for the large matrix inversion successfully overcomes the 

computational problem such as memory size, computer time, and innacurate 

numerical results. The estimated parameters from the FGLS-based estimator 

performed in the simulation is as good as the MLE.  

 

There, however, remain several problems in estimating VECM with GARCH errors 

for the future research as follows: (1) to use realized volatility (RV) instead of 

multivariate GARCH model, (2) to compare the GLS and MLE under non-normality 

by Monte Carlo simulation, (3) to carry out theoretical comparisons of asymptotic 

properties of the GLS and MLE, under normality and non-normality, (4) to examine 

the performance of VEC model with GARCH errors when it is applied to empirical 

analysis of financial time series. We have a plan to attack these problems in future. 
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PART II 

APPLICATION OF SUR-GARCH METHOD 

IN INTERNATIONAL CAPM TEST 
 

 

 

1. MODELS 

The proposed test model is aimed to examine the relationship between expected 

returns of national stock market indexes and the world market portfolio returns. The 

national stock market indexes are weighted average of the constituent stocks prices 

based on either market capitalization (e.g. S&P500 Index) or liquidity (e.g. Nikkei 

225). The riskless asset is proxied by government securities; 3-month T-Bill. 

In previous international CAPM literatures, MSCI world index or other Exchange 

Traded Fund (ETF) that consists of national market indexes were used as proxy of the 

world market portfolio. It should be noted that such index weighs the composing asset 

based on market capitalization or liquidity where the weight is always nonnegative. It 

means that the world market portfolio consists of assets in long position. Meanwhile 

CAPM assumes that unrestricted short selling of those assets is allowed. One may 

argue that we can short sell the index instead of short selling its composing assets. 

However, the strategy of short selling the world market index does not ensure us that 

the portfolio is efficient and at tangent of capital market line. To overcome these 

problems, world market portfolio is constructed following Merton (1972) procedure 

and Tobin‟s separation theory (Tobin, 1958) to guarantee that the portfolio is not only 

mean-variance efficient, but also located at a point which is at tangent of the capital 

market line. 

 

1.1. Expected return and Conditional Variance-Covariance Matrix of Each Asset 

Considering that the stock markets has long-run equilibrium with the other markets 

and disturbance errors of the estimation model are correlated and heteroscedastic, 

vector error correction model with GARCH (VEC-GARCH Model) is applied to 

estimate the expected returns of each national market index and their conditional 
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variance-covariance matrix. The VEC-GARCH model consists of mean equations and 

variance equations as follows. 

 

The mean equations (the unrestricted VECM) is 

 

   
   ̂  ( ̂)    

   ̂    
   ̂  (1) 

where,   

  
   = [                       ]  is vector of first order difference of log 

national market indexes at time t, where               (
    

      

) is also 

national market return at time t. 

    
  = [                  ]  is vector of first order lagged of log national 

market indexes 

 ̂ =   ̂   ̂   ̂   ̂    is vector of constant terms 

 ̂ = NxN matrix of error correction coefficients. When rank( ̂)<N,  ̂ can be 

decomposed into AB by Granger representation theorem , where A is vector 

of coefficient of cointegrating equation (adjustment parameters) and, B is 

vector of cointegrating coefficient. 

   = [

       

   
       

] is a NxN matrix of VAR parameters 

    =               is the vector of disturbance errors, where    (   ̂ ) 

 

and the variance equations (Diagonal BEKK Model, Engle and Kroner (1995)) is 

  

  ̂   ̂ ̂    ̂  ̂ 
     ̂    ̂   

     ̂  ̂ 
    ̂   , (2)

  

 

where,  ̂  is NxN conditional variance-covariance matrix (its diagonal elements are 

conditional variances,   ̂ 
 (  )   , and the off-diagonal elements are conditional 

covariances,   ̂ (    )   , where    , for i and j=[1 N]),  ̂ ̂ ,  ̂  ̂ 
 , and  ̂  ̂ 

  are 

diagonal matrix of constants, coefficients of ARCH terms, and coefficients of 

GARCH terms respectively, and   is element by element (Hadamard) product 

operator. 
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The parameters in the mean equations and the variance equations theoretically can be 

estimated by maximum likelihood estimator (MLE). However, when the system is 

large as in our case, MLE often produces inaccurate results because too many 

parameters need to be estimated such that the optimization of the log likelihood 

function failed. To overcome this problem, the mean equation (VECM) parameters 

were estimated as those in Seemingly Unrelated Regression (SUR) system using 

modified feasible generalized least square (mFGLS) estimator that taking into account 

the GARCH error structure. This estimation strategy was also used in testing the 

CAPM and shall be explained later. 

 

For estimating conditional variance of realized return, the mean equation in equation 

(1) was replaced by  ̃   ̂   ̂  and the conditional variance-covariance matrix was 

estimated by Diagonal BEKK. Henceforth, accent “ ̃ ” and “ ̌ ” are used for 

indicating variable based on the realized return and the estimated expected return 

respectively. 

 

1.2. World Market Portfolio Formation 

World market portfolio was constructed by assuming that unrestricted short selling 

and borrowing at riskless rate in domestic or national market are allowed. The 

assumptions were made to follow the underlying assumptions in CAPM.  

 

The proportion of each asset in an efficient portfolio was obtained by minimizing 

objective function of portfolio variance with respect to following constraints: [1] a set 

of target portfolio expected return and, [2] the sum of proportion of each asset 

(including riskless asset) is equal to one. When short selling is prohibited, constraint 

[2] is modified by adding restriction on proportion of each risky asset to vary between 

0 to 1, yet in this paper the proportion is unrestricted to indicate that the short selling 

can be done without any restriction.  

 

Suppose that country i is our focus of analysis and call it home country. Portfolio   

consists of riskless asset available at domestic market i and N international risky 

portfolios (  
      

     
 ). The rate of return of   is the weighted average of rate 
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of return of its composing assets. Our objective is to construct world market portfolio 

denoted by   that consists of risky portfolios only (proxied by market indexes). Let 

us define          (               ) , and e as riskless rate of return, vector of 

proportion of risky assets in portfolio   and vector of ones respectively. Constraint 

[2] implies that (     ) is the proportion of riskless asset in portfolio  . Applying 

constraint [2] to the expected return of risk-free asset and risky assets definition, the 

expected return of   may be stated as: 

 

  ̌ 
          

 ( ̌ 
       )  (3) 

 

Having conditional variance-covariance matrix  ̂  from (2), variance of portfolio   at 

time t is computed by, 

 

  ̂ 
 ( ̌ )    

  ̂   . (4) 

 

The optimal weight of the N risky assets and risk-free asset was obtained by solving 

following optimization problem: 

 

      

 

 
  

  ̂     { ̌ 
          

 ( ̌ 
       ) }. (5) 

 

The first-order condition of (5) leads to following solution: 

 

   
    ̂ 

  ( ̌ 
       ). (6) 

 

Taking   
  from (6) and apply the     

    restriction, we may obtain  : 

 

     
       ̂ 

  ( ̌ 
       )     

              
   (7) 

 

where    ̌ 
   ̂ 

    and      ̂ 
   .  

 

From (6), the expected return of risky portfolio M is  ̌ 
    

  
 ̌ 

  and the variance of 

portfolio P will be equal to the variance of portfolio M defined as  ̂ 
 ( ̌ )  

 ̂ 
 ( ̌ )    

   ̂   
 . Define  ̂ ( ̌

 )  as nx1 vector of covariance of the tangency 

portfolio   with each of the risky asset. Then using (6) and (7), we have 

 

   ̂ ( ̌
 )   ̂   

   ( ̌ 
       ) (8) 
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Pre-multiply (8) by   
   we have  ̂ 

 ( ̌ ) restated as 

  

  ̂ 
 ( ̌ )    

   ̂ ( ̌
 )     

  
( ̌ 

       )   ( ̌ 
      ) (9) 

 

Rearranging (8) and substituting in for m from (9) we have the CAPM: 

 

 ( ̌ 
       )  

 

 
 ̂ ( ̌

 )  
 ̂ ( ̌

 )

 ̂ 
 ( ̌ )

( ̌ 
      ). (10) 

 

The LHS of (10) is the expected excess return from each asset, while on the RHS, 

 ̂ ( ̌
 )

 ̂ 
 ( ̌ )

  ̂  is vector of time varying betas of each risky asset, and ( ̌ 
      ) is the 

expected market risk premium that prevails for all risky assets. Note that because we 

are assuming that short selling is unrestricted,  ̌ 
  is always nonnegative, and the 

portfolio M is always in the efficient frontier of portfolio P (the risk-free and risky 

assets portfolio). However, elements of  ̌ 
 , the estimated expected return of each 

asset could be positive or negative. When the expected return of an asset is negative, 

it will be more likely to be short sold. Thus,  ̂ ( ̌
 ) is not always positive. As a result 

we may find that an asset‟s beta and the beta risk premium is negative.
1
 

 

1.3. Testing Conditional CAPM 

The capital asset pricing model in equation (10) will serve as our test model. In 

addition, because we consider international assets, we must put additional risk factor 

other than the world market risk (represented by the betas) that indicates the required 

adjustment for the excess return. In this paper we include exchange rate returns in the 

model. We can consider the international CAPM being tested in this paper is 

involving Exchange Traded Funds (ETFs) that track directly the respective stock 

market indexes. Therefore, like the CAPM test for assets traded in one market, we can 

ignore the transaction cost of acquiring the cross-border assets. The test model is 

defined in a system equation as follows: 

 

      ̂̂   ̂ 
  ̂̂    

  ̂̂     (11) 

 

                                                        
1
 See Pennacchi (2008) pp. 37-60 for more detailed derivation of the market portfolio. 
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where     and  ̂  are vector of excess returns and market betas as defined in (10),    

is vector of exchange rate returns for the respective markets. The vectors of estimated 

coefficients are  ̂̂,  ̂̂, and  ̂̂. 

 

CAPM is said works well when all elements in  ̂̂ are statistically not different from 

zero (the test does not reject   
 :  ̂̂      ). However, evaluating  ̂̂  individually 

shall show the applicability of CAPM for pricing that asset. In addition, because of 

the fully integrated market assumption, we expect that the (beta) market risk premium 

for every markets are homogenous. However, since short selling is allowed, the 

negative betas and risk premiums are possible. Thus, the homogeneity test was carried 

out by taking the absolute values of the premium (the test does not reject   
  | ̂̂ |  

| ̂̂ |    | ̂̂ |). Rejection of the null hypothesis indicates that markets are not fully 

integrated, in other words, the risk is priced differently for different assets; a violation 

of the law of one price. The elements in  ̂̂ show additional risk price required with 

respect to the exchange rate changes. As exchange rate policies are different across 

the countries, we expect that the estimated coefficient in  ̂̂ will be higher for countries 

that adopt free float regime than those that adopt fixed exchange rate or dollar pegged 

regime. Moreover, exchange rates against US Dollar in emerging markets are also 

tend to be more volatile than those in developed countries, thus it is also expected that 

the estimated coefficient is significantly different from zero for countries with non-

fixed exchange rate regime. 

 

Under fully integrated market assumption the unexpected returns or shocks in one 

stock market may affect or spill over to the others. Moreover, we also found common 

cyclicality of business cycles in the stock markets. Therefore, we are assuming that 

the error terms    has multivariate GARCH error structure. In order to estimate the 

parameters, we apply SUR with GARCH (SUR-GARCH) estimation. Estimation 

from the standard SUR was also presented to see the effect of ignoring the GARCH 

error structure. 
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2. ESTIMATION STRATEGY 

Equation (1) and (11) can be restated as SUR model. For simplicity, we will use 

system equation (11) as a sample to explain the estimation strategy. 

Let us define     as T-vector of excess return of asset-i, matrix        ̂      is 

vector of independent variables, where its respective elements are T-vector of ones, T-

vector of time varying beta for asset-i, and T-vector of exchange rate changes for 

market-i, and       ,   ,     is vector of coefficients for equation-i. Then, equation-i 

in the system equation (11) can be restated as follows: 

 

                             (12) 

 

where    is T-vector of the disturbance errors for the equation. In stacked model, the 

system equation (11) can be restated as follows: 

 

 [

   

   

 
   

]  [

     
     

   
     

] [

  

  

 
  

]  [

  

  

 
  

],  

 

In general, the corresponding matrices define the following system, 

 

       . (13)

  

 

VECM in system equation (1) also can be stated similar to the above system equation 

by redefining the   and   accordingly. To reduce the number of parameters needs to 

be estimated in the VEC-GARCH, we first estimate the VECM (without GARCH), 

create series of cointegrating equation (we assume that there is only one cointegrating 

equation), and use it as new variable in a VAR system. Thus, the    for system 

equation (1) defined as                
  , where CE is T-vector of cointegrating 

series that applied for every i. 

 

2.1. Feasible Generalized Least Square (FGLS) SUR Estimation  

FGLS or also known as Zellner‟s estimator (Zelner, 1962), assumes that 

    |               (strict exogeneity of Xi),  and       
 |            

       (homoscedasticity). As stock markets are assumed to be fully integrated, the 
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disturbances might be correlated across equations. Therefore, 

 [      
 |          ]       for     and 0 for    . The     is covariance 

between disturbances i and j; it is ijth element of variance-covariance matrix  . Let us 

also define        The generalized least square estimator under the covariance 

structures assumption is 

 

  ̂     ( ̂  )
  

       ( ̂  )
  

  . (14) 

 

Because     is generally unknown, it is estimated by  ̂       
 ̂ 

  ̂ 

 
 where  ̂  is 

vector of residuals in equation i. By doing so, the estimated variance-covariance 

matrix  ̂ can be computed. The FGLS estimator requires inversion of matrix  ̂, so that 

the matrix must have a non-zero discriminant.  

The standard errors of the parameters were estimated by taking the square root of 

elements in sampling variances: 

 

    [ ̂| ]   ̂ (   ̂   )   (15) 

 

where,  ̂  
 ̂ 

  ̂ 

   
 

(    ̂)  ̂  (    ̂)

   
. 

 

The join hypotheses of   
  and   

 , were tested by Wald coefficient test with J degree 

of freedom, where J is N and N-1 respectively. The restriction is defined by   ̂   , 

where R is (JxK) matrix of restriction with K is number of the parameters in  ̂, and q 

is J-vector of the true values. The Wald statistic is       distributed and computed by 

 

      (  ̂   )    ̂ (   ̂   )     (  ̂   ). (16) 

 

 

2.2. Modified Feasible Generalized Least Square (mFGLS) SUR-GARCH 

Estimation  

Considering that system equation (1) and (11) are estimated in fully integrated 

markets and there were shocks and crises during the observation periods that spilled 

over among the samples, the multivariate GARCH error structure should be 

considered. To do so, following is steps to include the error structure for estimating 

the parameters in the models: 
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[1]   Estimate the mean equations by first ignoring the GARCH error structure and 

obtain the residuals. 

[2]   Use the residuals to estimates conditional variance-covariance matrix by 

using Diagonal BEKK model. At every observation t, we have  ̂  with 

elements of  ̂    . 

[3]   Use the variance-covariance matrix from step 2 to construct  ̂. Note that  ̂ in 

(14) is defined as  ̂   where the diagonal elements are the vector of 

variances of each equation (which is a constant variance) and the off-diagonal 

elements are all zeros (there is no covariance across the equations). The 

modified  ̂ at this step is considering the heteroscedasticity and covariance 

across the equations. To illustrate it in a simple example, for N= 3,  ̂ is: 

 

 ̂  [

 ̂   ̂   ̂  

 ̂   ̂   ̂  

 ̂   ̂   ̂  

] 

 

where,  ̂   is a NxN diagonal matrix where its main diagonal elements are 

elements of N-vector of       and zeros on the off-diagonal elements, and 

 ̂    ̂   , i.e., 

 

 ̂   

[
 
 
 
 
 
 ̂    

  

 ̂    

  

 ̂    ]
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Thus we have, 

 

 

 ̂    

  
 ̂    

  
 ̂    

 

 ̂    

  
 ̂    

  
 ̂    

 

 ̂    

  
 ̂    

  
 ̂    
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 ̂    
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 ̂    

  
 ̂    

  
 ̂    

 

 ̂    

  
 ̂    

  
 ̂    

 

 ̂    

  
 ̂    

  
 ̂    

  

 

 ̂    

  
 ̂    

  
 ̂    

 

 ̂    

  
 ̂    

  
 ̂    

 

 ̂    

  
 ̂    

  
 ̂    

  

 

where  ̂     follow multivariate MGARCH(1,1) process.  

After obtaining an estimate  ̂, we have the modified FGLS, 

 

  ̂      ̂         ̂    (17) 

 

Note that inverting a large and sparse matrix  ̂ often causes computational 

problems such as memory size, computer time, and inaccurate numerical 

results. To avoid those problems we propose the following algorithm: After 

estimating MGARCH process we construct a relatively small matrix   ̂  and 

its inverse  ̂ 
   at each time t such that,  

    

  ̂  [

 ̂     ̂     ̂    

 ̂     ̂     ̂    

 ̂     ̂     ̂    

]       ̂ 
   [

 ̂ 
   ̂ 

   ̂ 
  

 ̂ 
   ̂ 

   ̂ 
  

 ̂ 
   ̂ 

   ̂ 
  

]  

 

where   ̂  and  ̂     are estimated variance covariance of MGARCH.  

Replacing  ̂     with  ̂ 
  

 in  ̂  we have easily obtain  ̂   without inverting a 

large matrix  ̂   

 

Having the modified  ̂ and  ̂ the hypotheses can be tested using the Wald Test as 

described previously. The performance of the modified FGLS estimator has been 

examined by carrying out Monte Carlo simulation. The modified FGLS estimator is 
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still an unbiased estimator and it is more efficient and consistent than the standard 

FGLS estimator when multivariate GARCH error structure does exist (Maekawa and 

Setiawan, 2012). 

 

3. DATA 

Stock market index from 12 economies were collected with its respective currency. 

The indexes represent 6 developed stock markets: United States S&P500 (US), 

Germany DAX (GE), Hong Kong Hang Seng (HK), Japan Nikkei225 (JP), Singapore 

Strait Times (SI) and FTSE100 (UK), and 6 emerging markets: Argentina MerVal 

(AR), Brazil BOVESPA (BR), China SSEC (CH), Indonesia IDX composite (ID), 

Malaysia KLSE composite (MA), and Mexico IPC (ME). The market indexes are 

exchange rate adjusted, with US Dollar as the home currency. 

 

The dataset starts from July 1997 to July 2012 and in weekly basis for avoiding non-

synchronous trading time effect. Data were collected from Yahoo Finance service 

through its website. Because weekly data is used, and it is assumed that portfolios 

rebalancing are done weekly, the returns are not including dividends. Most of the 

stock market indexes are value-weighted indexes and the remaining are equally 

weighted index and top performers‟ index. However, the indexes used in this paper 

are assumed sufficient in representing the market portfolio in the respective markets 

because the indexes used to be regarded as the market references. As the US is 

regarded as home country, US 3-month T-Bills is used as the risk-free rate. 

 

4. FINDINGS 

4.1. Data Properties 

Based on Augmented Dickey-Fuller (ADF) Tests and Common Unit Root Tests 

performed for data in level (log market index) and its first difference (return), the 

results indicate that all series in level are non-stationary (except for Indonesia and 

Malaysia when intercept and trend are included), but all series in its first difference 

are stationary.  

Granger causality test for returns of the US Dollar adjusted market indexes were 

performed, and the results are shown in Table 1. It indicates that US stock market 

Granger-caused the other markets (except for China, Malaysia and Mexico). The 
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result implies that US stock market is still very dominant and has greater influence to 

other markets in the world.  

 

Table 1: Granger Causality Test for Stock Markets Returns 

 
US GE HK JP SI UK AR BR CH ID MA ME 

US 
 

0.031   0.000  0.014  0.001  0.006  0.078  0.000  0.072  0.000  0.091  0.139  
GE 0.579  

 
0.010  0.696  0.024  0.942  0.107  0.008  0.007  0.001  0.014  0.744  

HK 0.293  0.638  
 

0.432  0.042  0.338  0.067  0.006  0.091  0.000  0.027  0.355  
JP 0.243  0.500  0.157  

 
0.049  0.522  0.509  0.277  0.120  0.004  0.016  0.583  

SI 0.548  0.892  0.753  0.807  
 

0.501  0.110  0.055  0.082  0.000  0.092  0.133  
UK 0.253  0.784  0.052  0.411  0.018  

 
0.156  0.003  0.017  0.012  0.039  0.894  

AR 0.279  0.178  0.088  0.462  0.071  0.644  
 

0.194  0.017  0.076  0.349  0.614  
BR 0.976  0.107  0.180  0.368  0.201  0.229  0.743  

 
0.083  0.001  0.423  0.413  

CH    0.126     0.495     0.085     0.703     0.286     0.246     0.663     0.589  
 

  0.389     0.954     0.923  
ID    0.717     0.423     0.196    0.687    0.115     0.913     0.421    0.474     0.853  

 
   0.615     0.819  

MA    0.925    0.995     0.879     0.897     0.006    0.339     0.561     0.098     0.044     0.106  
 

 0.672  
ME    0.928    0.275    0.112   0.454    0.081    0.159    0.184     0.318    0.438  0.000  0.262  

 
The numbers represent p-value on Granger Causality F-Statistic with lag-1 of the stock markets 

returns.  The table is read „row‟ Granger-cause „column‟. 

 

Table 2:  Johansen‟s Cointegration Test 
Trace Test 

Hypothesized 

 

Trace 0.05 

 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None * 0.110 464.063 374.908 0.000 

At most 1 * 0.103 372.930 322.069 0.000 

At most 2 * 0.087 288.022 273.189 0.010 

At most 3 0.060 216.213 228.298 0.157 

Maximum Eigenvalue Test 

Hypothesized 

 

Max-Eigen 0.05 

 No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None * 0.1096 91.1335 80.8703 0.0048 

At most 1 * 0.1025 84.9072 74.8375 0.0047 

At most 2 * 0.0874 71.8092 68.8121 0.0256 

At most 3 0.0596 48.2450 62.7521 0.5701 

 Trace test and Max-eigenvalue test indicates 3 cointegrating equations at the 0.05 level. 

 * denotes rejection of the hypothesis at the 0.05 level,  **MacKinnon-Haug-Michelis (1999) p-values 
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The cointegration test in Table 2 shows that there are three cointegrating equations. It 

shows that there is long-term equilibrium relationship among the market indices. 

However, for simplicity and reducing computational burden in VECM estimation, 

only one cointegrating equation was applied. The cointegrating equation in the 

VECM is shown in Table 3. Using the cointegration equation, VECM and VEC-

GARCH Model parameters are shown in Table 4 and 5. 

 

Table 3: Cointegrating Equation in Vector Error Correction Model (VECM) 

 
log(US) log(GE) log(HK) log(JP) log(SI) log(UK) log(AR) log(BR) log(CH) log(ID) log(MA) log(ME) Const. 

Coeff. 1.000 0.094 0.526 -0.371 0.021 -0.528 -0.138 -0.008 -0.022 0.364 -0.996 -0.023 2.027 

S.E. 
 

-0.170 -0.182 -0.127 -0.234 -0.167 -0.061 -0.091 -0.055 -0.071 -0.140 -0.082 -1.002 

t-stat. 
 

0.554 2.884 -2.916 0.090 -3.153 -2.282 -0.083 -0.397 5.117 -7.131 -0.282 2.024 

Number in bold face indicates the coefficient is significant at 5% level. 

 

 

Table 4: Vector Error Correction Model (VECM) 

 

 ̌      ̌      ̌      ̌      ̌      ̌      ̌      ̌      ̌      ̌      ̌      ̌     

Coint.Eq. -0.027 -0.022 0.011 0.027 0.021 -0.017 -0.002 -0.019 -0.025 0.043 0.095 -0.011 

S.E. -0.009 -0.014 -0.013 -0.012 -0.013 -0.010 -0.019 -0.021 -0.012 -0.022 -0.014 -0.015 

 ̌       -0.034 0.159 0.218 0.203 0.185 0.171 0.071 0.289 -0.023 0.107 -0.049 0.182 

S.E. -0.062 -0.092 -0.088 -0.078 -0.088 -0.069 -0.128 -0.138 -0.083 -0.148 -0.093 -0.103 

 ̌       0.006 -0.178 0.043 -0.064 -0.004 -0.066 0.046 0.020 0.080 0.090 0.091 -0.002 

S.E. -0.045 -0.067 -0.065 -0.057 -0.064 -0.050 -0.094 -0.101 -0.060 -0.108 -0.068 -0.076 

 ̌       -0.004 0.021 -0.050 0.012 0.041 0.028 0.088 0.137 0.018 0.080 0.017 0.036 

S.E. -0.042 -0.063 -0.060 -0.053 -0.060 -0.047 -0.087 -0.094 -0.056 -0.101 -0.063 -0.070 

 ̌       -0.033 0.018 0.021 -0.064 0.029 0.002 -0.037 -0.052 0.005 0.022 0.064 -0.072 

S.E. -0.036 -0.053 -0.051 -0.045 -0.051 -0.040 -0.074 -0.080 -0.048 -0.086 -0.054 -0.060 

 ̌       0.007 -0.005 -0.002 -0.015 -0.128 -0.004 0.066 -0.040 -0.007 0.199 0.012 0.105 

S.E. -0.042 -0.062 -0.060 -0.053 -0.059 -0.046 -0.086 -0.093 -0.056 -0.100 -0.063 -0.070 

 ̌       -0.049 -0.062 -0.057 -0.007 0.025 -0.177 -0.039 0.038 0.021 -0.193 0.034 -0.110 

S.E. -0.062 -0.092 -0.088 -0.078 -0.088 -0.069 -0.128 -0.138 -0.082 -0.147 -0.093 -0.103 

 ̌       -0.027 0.024 0.033 0.011 0.028 -0.009 -0.001 0.027 0.051 -0.027 0.017 0.022 

S.E. -0.023 -0.034 -0.032 -0.029 -0.032 -0.025 -0.047 -0.050 -0.030 -0.054 -0.034 -0.038 

 ̌       0.012 0.034 -0.004 0.009 -0.017 0.012 -0.037 -0.130 0.022 0.042 -0.020 -0.050 

S.E. -0.024 -0.036 -0.034 -0.030 -0.034 -0.027 -0.050 -0.054 -0.032 -0.057 -0.036 -0.040 

 ̌       -0.044 -0.035 -0.059 -0.009 -0.050 -0.043 -0.045 -0.006 0.002 -0.105 0.006 -0.012 

S.E. -0.028 -0.042 -0.040 -0.035 -0.040 -0.031 -0.058 -0.062 -0.037 -0.067 -0.042 -0.046 

 ̌       0.009 -0.020 -0.033 -0.017 0.019 0.001 -0.052 0.007 -0.020 -0.047 -0.060 -0.013 

S.E. -0.018 -0.027 -0.026 -0.023 -0.026 -0.020 -0.037 -0.040 -0.024 -0.043 -0.027 -0.030 

 ̌       0.003 0.003 0.007 0.012 0.105 0.019 0.005 0.043 0.057 -0.010 0.025 -0.017 

S.E. -0.029 -0.043 -0.041 -0.037 -0.041 -0.032 -0.060 -0.065 -0.039 -0.069 -0.044 -0.048 

 ̌       0.023 -0.019 -0.025 -0.029 -0.021 0.008 0.033 -0.084 -0.085 0.058 -0.016 -0.027 

S.E. -0.036 -0.053 -0.051 -0.045 -0.051 -0.040 -0.074 -0.079 -0.048 -0.085 -0.054 -0.059 

Number in bold face indicates the coefficient is significant at 5% level. 
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Table 5: VEC-GARCH Model By Modified FGLS Estimator 

 

 ̌      ̌      ̌      ̌      ̌      ̌      ̌      ̌      ̌      ̌      ̌      ̌     

Coint.Eq. -0.021 -0.025 0.019 0.030 0.025 -0.014 0.001 -0.041 -0.017 0.035 0.095 -0.011 

S.E. 0.006 0.008 0.010 0.008 0.009 0.007 0.010 0.016 0.011 0.017 0.012 0.011 

 ̌       -0.106 0.044 0.149 0.131 0.165 0.083 0.005 -0.016 -0.056 0.217 -0.012 0.000 

S.E. 0.050 0.071 0.066 0.068 0.061 0.053 0.100 0.111 0.078 0.100 0.060 0.082 

 ̌       0.032 -0.117 0.094 -0.043 0.034 -0.059 0.076 0.033 0.080 0.055 0.094 0.044 

S.E. 0.037 0.056 0.048 0.050 0.045 0.040 0.074 0.081 0.057 0.070 0.044 0.058 

 ̌       0.018 0.076 -0.051 0.034 0.017 0.102 0.109 0.279 0.018 0.037 0.016 0.059 

S.E. 0.031 0.044 0.046 0.043 0.041 0.033 0.060 0.074 0.051 0.073 0.045 0.053 

 ̌       -0.029 0.025 -0.031 -0.060 0.023 0.007 -0.010 -0.078 -0.013 0.018 0.004 -0.089 

S.E. 0.028 0.040 0.038 0.042 0.035 0.029 0.058 0.065 0.044 0.060 0.036 0.047 

 ̌       -0.004 -0.042 -0.027 -0.009 -0.107 -0.049 0.009 -0.085 -0.019 0.064 0.016 0.039 

S.E. 0.032 0.046 0.049 0.046 0.046 0.034 0.066 0.079 0.051 0.078 0.048 0.057 

 ̌       0.028 0.061 -0.018 0.051 -0.038 -0.048 0.017 0.199 0.057 -0.172 -0.054 0.042 

S.E. 0.050 0.073 0.064 0.068 0.059 0.055 0.101 0.112 0.078 0.095 0.059 0.080 

 ̌       -0.015 0.021 0.029 0.016 0.048 -0.003 0.035 0.032 0.052 -0.027 0.025 0.048 

S.E. 0.018 0.028 0.023 0.027 0.022 0.019 0.044 0.041 0.028 0.034 0.021 0.029 

 ̌       -0.002 0.012 -0.006 0.001 -0.013 -0.011 0.009 -0.096 0.005 0.065 0.010 -0.020 

S.E. 0.019 0.028 0.025 0.027 0.023 0.020 0.040 0.045 0.030 0.039 0.024 0.031 

 ̌       -0.068 -0.071 -0.074 -0.069 -0.073 -0.083 -0.145 -0.129 0.005 -0.118 0.002 -0.097 

S.E. 0.020 0.029 0.027 0.029 0.025 0.022 0.041 0.046 0.036 0.043 0.026 0.034 

 ̌       0.014 -0.008 -0.043 -0.009 0.027 0.002 0.003 0.043 -0.031 0.030 -0.063 0.013 

S.E. 0.014 0.019 0.023 0.021 0.021 0.015 0.030 0.037 0.022 0.041 0.024 0.026 

 ̌       0.028 0.051 0.085 0.015 0.132 0.056 0.044 0.071 0.069 0.069 0.089 0.028 

S.E. 0.023 0.031 0.035 0.030 0.032 0.023 0.044 0.056 0.036 0.058 0.040 0.040 

 ̌       0.031 -0.024 -0.002 -0.025 0.014 0.014 -0.035 -0.099 -0.056 -0.002 0.010 -0.048 

S.E. 0.028 0.040 0.038 0.040 0.035 0.029 0.058 0.066 0.045 0.061 0.035 0.049 

Number in bold face indicates the coefficient is significant at 5% level. 

 

 

4.2. Expected Return of Risky Asset 

The estimated parameters and their standard errors in the VECM and VEC-GARCH 

model are different. Because MGARCH error structure is assumed, the estimated 

expected returns are based on the VEC-GARCH model. 

 

The statistics of the estimated expected return and realized return are presented in 

Table 6. In general, emerging stock markets such as Brazil, China, and Mexico had 

higher expected return, yet they were also more volatile than those in the developed 

markets. Several economic crises and recessions took place during the observation 

period, such that the averages of expected returns in most countries were negative. 

The long period of recession in Japan was causing both its realized and expected 

returns are negative. In emerging markets, only stock market in Argentina that 

consistently has negative realized and expected return. 
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Table 6: Annualized Weekly Statistics 
Realized Return US GE HK JP SI UK AR BR CH ID MA ME 

Mean 0.024 0.034 0.015 -0.030 0.033 0.004 -0.029 0.044 0.056 0.020 0.014 0.096 

Std.Dev. 0.178 0.265 0.255 0.225 0.255 0.199 0.367 0.397 0.238 0.430 0.275 0.295 

Expected Return* US GE HK JP SI UK AR BR CH ID MA ME 

Mean 0.008 -0.001 -0.005 -0.014 -0.010 0.002 -0.006 0.000 0.002 -0.005 -0.031 -0.001 

Std.Dev. 0.026 0.033 0.048 0.035 0.061 0.031 0.057 0.081 0.037 0.081 0.076 0.039 

*The estimated expected return was estimated by VEC-GARCH using modified FGLS estimator 

 

4.3. Conditional Variance of Risky Asset 

Conditional variances for each market expected return were estimated using Diagonal 

BEKK model of Engle and Kroner (1995) as specified in equation (2) and the results 

are shown in Figure 1 and 2 for the developed and emerging markets respectively.  

 

The figures show that the conditional variances were increasing during period of 

crises, yet the magnitudes varied across the samples. For example, non-Asian 

developed and emerging stock markets were less affected by the Asian financial crisis 

in 1997-1998. However, the US financial crisis in 2008-2009 seems spilled over to 

other markets and the Asian markets were becoming more volatile in that period. 

Emerging markets apparently show higher volatility than that for the developed 

markets. The different magnitudes of volatility indicate that there is opportunity to 

obtain lower diversifiable risk by investing in those markets; this could be the driving 

factor of stronger price comovements and stock market integration. 
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Figure 1: Conditional Variance of Estimated Expected Return in Developed 

Markets 

 
Note: Shaded area is the US recession period (based on NBER Business Cycle Dating Committee 

report, last update was on September 20, 2010). 

 

 

Figure 2: Conditional Variance of Estimated Expected Return in Emerging Markets 

 
Note: The scale was trimmed to conform to the Figure 1. Shaded area is the US recession period 

(based on NBER Business Cycle Dating Committee report, last update was on September 20, 2010). 
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4.4. Test of International CAPM 

The ex-ante and ex-post test for the CAPM were carried out under both SUR (without 

GARCH) and SUR-GARCH. The results are shown in Table 7 and 8 respectively. In 

ex-ante test (Table 7), the null hypotheses   
  and   

  are all rejected, they indicate 

that CAPM does not work well for the international assets and the market risk 

premiums are heterogeneous across the markets. However, individual test of the 

hypothesis that  ̂    (t-test) show that CAPM can be applied for pricing of all 

market indexes (except for the Malaysian market), even under the SUR-GARCH test, 

all alphas are not statistically different from zero. It is susceptible that the rejection of 

  
  were caused by large differences in the standard errors

2
. This is an indication that 

the market risk premium adjustments across the markets were so vary during the 

observation period. The results suggest that removing some markets from the sample 

might alter the verdict that the CAPM does not fit well for international asset pricing. 

 

The homogeneity test of the market risk premiums are also rejected in both tests. It 

suggests that the stock markets were not fully integrated yet. Market risk is priced 

higher in Asian stock markets such as in Singapore, Indonesia, and Malaysia, than 

that in other markets. Meanwhile, in the US and the Japan, the market risk premium is 

lower than that in the other markets.  

 

Note that all market risk premiums are nonnegative. This is the expected result. It 

indicates that the constructed world market portfolio is always in the efficient frontier 

and is at the tangency of capital market line. 

  

                                                        
2 The differences in the standard errors cannot be seen in the tables because the numbers were rounded to only three decimals.  
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Table 7: Ex-Ante International Dynamic Beta CAPM Test 

 

SUR SUR-GARCH 

 

Coef. S.E. t-Stat. Prob. Coef. S.E. t-Stat. Prob. 

 ̂   0.000 0.000 1.885 0.059 0.000 0.000 0.279 0.781 

 ̂   0.021 0.000 51.835 0.000 0.021 0.000 74.689 0.000 

 ̂   0.000 0.000 1.144 0.253 0.000 0.000 -1.152 0.252 

 ̂   0.022 0.000 65.176 0.000 0.022 0.000 95.359 0.000 

 ̂   -0.002 0.003 -0.596 0.552 -0.001 0.002 -0.564 0.574 

 ̂   0.000 0.000 0.180 0.857 0.000 0.000 1.747 0.084 

 ̂   0.022 0.000 70.061 0.000 0.022 0.000 104.130 0.000 

 ̂   0.066 0.056 1.175 0.240 0.063 0.031 2.032 0.045 

 ̂   0.000 0.000 -2.233 0.026 0.000 0.000 0.165 0.869 

 ̂   0.022 0.000 71.136 0.000 0.021 0.000 105.469 0.000 

 ̂   0.002 0.003 0.829 0.407 0.002 0.002 0.951 0.344 

 ̂   0.000 0.000 -0.349 0.727 0.000 0.000 0.293 0.770 

 ̂   0.024 0.000 67.676 0.000 0.023 0.000 101.945 0.000 

 ̂   0.018 0.010 1.765 0.078 0.012 0.006 2.037 0.044 

 ̂   0.000 0.000 1.751 0.080 0.000 0.000 0.043 0.966 

 ̂   0.022 0.000 71.038 0.000 0.022 0.000 103.266 0.000 

 ̂   0.001 0.003 0.465 0.642 0.002 0.002 0.822 0.413 

 ̂   0.000 0.000 -0.122 0.903 0.000 0.000 0.053 0.958 

 ̂   0.023 0.000 81.410 0.000 0.022 0.000 121.855 0.000 

 ̂   0.000 0.003 -0.098 0.922 0.000 0.002 -0.143 0.886 

 ̂   0.000 0.000 0.820 0.412 0.000 0.000 -1.226 0.223 

 ̂   0.023 0.000 62.376 0.000 0.022 0.000 92.981 0.000 

 ̂   0.000 0.005 -0.007 0.994 0.001 0.003 0.253 0.801 

 ̂   0.000 0.000 -0.298 0.766 0.000 0.000 -1.898 0.061 

 ̂   0.022 0.000 75.680 0.000 0.021 0.000 102.483 0.000 

 ̂   -0.040 0.023 -1.710 0.087 -0.011 0.015 -0.749 0.455 

 ̂   0.000 0.000 -0.721 0.471 0.000 0.000 0.426 0.671 

 ̂   0.024 0.000 67.258 0.000 0.023 0.000 103.701 0.000 

 ̂   0.003 0.002 1.471 0.141 0.003 0.001 1.943 0.055 

 ̂   -0.001 0.000 -2.937 0.003 0.000 0.000 0.765 0.446 

 ̂   0.024 0.000 53.605 0.000 0.023 0.000 91.641 0.000 

 ̂   0.008 0.008 0.929 0.353 0.004 0.005 0.774 0.441 

 ̂   0.000 0.000 -0.348 0.728 0.000 0.000 -1.380 0.171 

 ̂   0.022 0.000 69.672 0.000 0.022 0.000 99.530 0.000 

 ̂   0.000 0.003 -0.126 0.900 0.000 0.002 -0.177 0.860 

Coefficients Wald Test 

Null Hypothesis d.f. Chi-sq Prob. 

 

d.f. Chi-sq Prob. 

 ̂       12 30.843 0.002 
 

12 26.463 0.009 

| ̂ |  | ̂ |    | ̂ | 11 69.525 0.000 
 

11 174.795 0.000 

Number in bold face indicates the coefficient is significant at 5% level. 

 

 

The effect of changes in currency exchange rates seemed to be absorbed by the 

market risk factor. Under the SUR-GARCH test, the additional required rate of return 

to compensate the exchange rate risk is only applied for assets from Hong Kong and 

Singapore stock market. This result indicates that the market risk (beta) is still the 

only relevant risk factor in the International CAPM (provided that un-integrated stock 

markets were removed from the sample such that   
  could not be rejected).  
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Table 8: Ex-Post International Dynamic Beta CAPM Test 

 

SUR SUR-GARCH 

 

Coef. S.E. t-Stat. Prob. Coef. S.E. t-Stat. Prob. 

 ̂   0.000 0.001 0.199 0.842 0.000 0.000 0.670 0.504 

 ̂   -0.019 0.003 -6.893 0.000 -0.015 0.002 -8.040 0.000 

 ̂   0.000 0.001 0.219 0.827 0.000 0.001 0.472 0.638 

 ̂   -0.017 0.003 -6.124 0.000 -0.011 0.002 -5.722 0.000 

 ̂   0.644 0.051 12.604 0.000 0.652 0.036 18.327 0.000 

 ̂   0.000 0.001 -0.346 0.729 0.000 0.001 -0.222 0.825 

 ̂   -0.006 0.003 -1.792 0.073 -0.002 0.002 -0.793 0.430 

 ̂   1.300 0.830 1.566 0.117 1.782 0.485 3.672 0.000 

 ̂   -0.001 0.001 -1.316 0.188 -0.002 0.001 -2.260 0.026 

 ̂   -0.011 0.003 -3.260 0.001 -0.007 0.002 -3.027 0.003 

 ̂   0.658 0.062 10.635 0.000 0.623 0.045 13.819 0.000 

 ̂   -0.001 0.001 -0.737 0.461 0.000 0.001 -0.007 0.994 

 ̂   -0.003 0.003 -0.977 0.329 0.000 0.002 0.023 0.981 

 ̂   1.227 0.102 11.996 0.000 1.112 0.061 18.143 0.000 

 ̂   0.000 0.001 0.236 0.813 0.000 0.000 0.150 0.881 

 ̂   -0.018 0.002 -7.196 0.000 -0.012 0.002 -7.459 0.000 

 ̂   0.653 0.040 16.178 0.000 0.661 0.027 24.050 0.000 

 ̂   -0.002 0.002 -0.928 0.353 -0.002 0.001 -1.898 0.061 

 ̂   0.008 0.004 2.189 0.029 0.008 0.003 3.051 0.003 

 ̂   0.345 0.072 4.759 0.000 0.462 0.077 6.027 0.000 

 ̂   -0.001 0.002 -0.408 0.683 0.001 0.001 0.591 0.556 

 ̂   -0.005 0.003 -1.717 0.086 -0.005 0.002 -2.877 0.005 

 ̂   1.037 0.054 19.222 0.000 1.050 0.035 30.399 0.000 

 ̂   0.000 0.001 -0.350 0.726 -0.001 0.001 -0.647 0.519 

 ̂   0.002 0.004 0.568 0.570 0.005 0.003 1.558 0.122 

 ̂   0.853 0.736 1.159 0.247 1.389 0.524 2.652 0.009 

 ̂   0.000 0.002 -0.078 0.938 0.003 0.001 2.919 0.004 

 ̂   -0.001 0.003 -0.424 0.671 0.001 0.002 0.476 0.635 

 ̂   0.978 0.035 28.243 0.000 1.064 0.032 33.572 0.000 

 ̂   0.000 0.001 -0.276 0.783 0.001 0.001 1.404 0.163 

 ̂   -0.004 0.004 -1.014 0.310 0.002 0.002 0.674 0.502 

 ̂   1.093 0.081 13.481 0.000 1.090 0.061 17.976 0.000 

 ̂   0.002 0.001 1.391 0.164 0.003 0.001 3.718 0.000 

 ̂   -0.007 0.003 -2.307 0.021 -0.007 0.002 -3.845 0.000 

 ̂   1.128 0.071 15.891 0.000 1.067 0.042 25.520 0.000 

Coefficients Wald Test 

Null Hypothesis d.f. Chi-sq Prob. 

 

d.f. Chi-sq Prob. 

 ̂       12 9.442 0.665 
 

12 45.876 0.000 

| ̂ |  | ̂ |    | ̂ | 11 36.816 0.000 
 

11 148.947 0.000 

Number in bold face indicates the coefficient is significant at 5% level. 

 

The ex-post test presented in Table 8 examined whether CAPM was applied in the 

market for pricing the international assets. The test was using realized or actual 

returns. From the table, CAPM fits well in pricing the assets when multivariate 

GARCH error structure was ignored (the test under SUR). Testing the alphas 

individually shall support the finding. However, from the data properties of the 

sample, the multivariate GARCH error structure does exist. Ignoring the error 

structure proved that the latter conclusion was inaccurate; when GARCH error 

structure was considered, the CAPM does not fit well! This result is inline with 

previous findings, for example in Lewellen and Nagel (2006) and Wu and Chiou 
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(2007). The latter paper used Kalman filter method in testing the CAPM. Thus, this 

paper shows the applicability of SUR-GARCH model using the modified FGLS 

estimator that is simpler than other method such as the Kalman filter. 

 

As the previous analysis in the ex-ante test, removing some stock market indexes 

might make CAPM works. Under the SUR-GARCH test, CAPM only failed to work 

for pricing the Japanese and the Indonesian stock market returns. This research shows 

that constructing world market portfolio from the twelve indexes leads to inapplicable 

CAPM. Finding the stock market indexes that make CAPM works is subject to future 

research.  

 

The realized market risk premiums are also heterogeneous. Some of the market risk 

premiums are negative. They indicate that those indexes returns have negative 

covariance with the world market portfolio. This is as a result of allowing the short 

selling. Moreover, this result also suggests that the stock markets were not fully 

integrated yet. The price of the market risk for the assets varies. In addition, exchange 

rate risk is also priced differently for the market indexes. It indicates that beta risk is 

not the only risk factor considered by investors. Multi factors CAPM may be applied 

in the markets. 

 

5. CONCLUSIONS 

Conditional International CAPM was tested under assumptions of unrestricted short 

selling and borrowing at riskless rate such that the constructed world market portfolio 

is a mean-variance efficient portfolio at the tangency of the capital market line. 

Previous researches that attempt to test the CAPM for international assets were using 

readily available index that was subject to the critique that the market portfolio was 

not mean-variance efficient. By constructing the world market portfolio that meets 

with the assumptions, we could estimates not only the expected return and conditional 

variance of that portfolio, but also the conditional covariance between the world 

market portfolio and its composing portfolios (national stock market indices), such 

that time varying betas for each international asset can be estimated. Thus, all 

assumptions used in building the CAPM were all met so that the test of the model can 

be emphasized on the estimated parameters of the model. 
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The test of the international asset-pricing model was carried out by assuming that the 

markets were fully integrated so that covariance among the disturbance terms is not 

zero. Furthermore, because crises, recession, and other kind of market shocks 

happened during the observation period in 1997:7 until 2012:7, heteroscedasticity of 

the errors is expected, and the sample data properties said so. To consider the 

covariance and the heteroscedasticity, the time varying beta CAPM was tested under 

SUR-GARCH model. In ex-ante test CAPM is rejected, but individual analysis of the 

assets showed that CAPM may be applied for all of the assets. It indicates that the risk 

premium adjustments were done during the period of analysis, and the levels of 

adjustments varied across the assets. The market risk is also priced differently for 

each assets, it indicates that the markets were not fully integrated yet. However, 

exchange rate risk is not significantly affecting the expected excess return. The latter 

shows that theoretically CAPM is correct, that the only risk factor worth to consider is 

the market risk (beta). However, in the real world, the ex-post tests show that CAPM 

had failed in pricing the international assets and it suggests that other risk factors 

might exist. 

 

The findings are subject to the stock market index selection for constructing the world 

market portfolio. In addition, CAPM might also work under sub-sample periods, for 

example under non-recession period. Finding the structural break point under SUR-

GARCH also a challenge in the econometric side. These issues should be addressed in 

the future research. 
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