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Abstract

Freshwater ecosystems have experienced over the last three decades larger declines in
biodiversity than terrestrial and marine ecosystems. In France, this degradation is represented
by a decline in the quality and quantity of water, and by changes in the distribution and
structure of aquatic biota for some rivers. These human-induced pressures are mainly driven
by land use changes such as urban development and intensive agriculture. In this paper, we
estimate a spatial panel data model to measure the effects of alternative land uses on a selected
indicator of the ecological status of surface water, namely a fish-based index. This model allows
us to control for both spatial autocorrelation and unobserved individual heterogeneity which
may influence water quality. We study the value of the fish-based index in various French
rivers at the level of hydrographic sectors observed between 2001 and 2013. Our preliminary
estimation results first reveal that spatial autocorrelation coefficients are significant. More
importantly, they indicate that the urban land is the land use with the greatest adverse
impact on freshwater fish populations. These results suggest that urban development tends
to degrade more freshwater bioversity than the other land uses.
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1 Introduction

Freshwater ecosystems have experienced over the last three decades larger declines in biodiversity
than terrestrial and marine ecosystems. This is due to alterations of habitat, water pollution
problems, overexloitation of water resources, exotic invasions, water extraction and flow regulation
(Mantyka-Pringle et al. (2014)). These human-induced pressures are mainly driven by land use
changes. The increased urbanization and development cause the alteration of habitat in rivers.
The agricultural sector is at the origin of diffuse pollution problems due to discharges of nitrogen,
phosphorus and pesticides in soil and water. Some rivers in France are highly degraded because
of these various land uses and their changes. This degradation is represented by a decline in the
quality and quantity of water, and by changes in the distribution and structure of aquatic biota
for some rivers in France (Oberdorff et al. (2002)). This has led us to ask what land uses are at
the origin of the spatial heterogeneity of the “health” of water bodies in France, and which public
policies are best in improving it.

France is constrained by the European Union Water Framework Directive since 2000. This
Directive indicates that the quality of surface water must be good or very good by 2015 for 60% of
water resources in all member states. However, France has failed to fulfill its obligation to comply
with this Directive. The decision of the European Court of Justice in September 2014 censured
France, for the third time since 2001, for the insufficient measures taken. In France in 2013, only
48,2% of surface water resources are in a good position regarding the chemical status. Regarding
the ecological status, only 43,4% of surface water resources are in a good or very good situation
(Onema/OIEau (2015)).

In order to reach the ecological objective of the Directive, France needs information on the
human-induced pressures on freshwater ecosystems. The objective of this study is to estimate
the effects of alternative land uses on a selected indicator of the ecological status of surface
water, namely a fish-based index (FBI1, hereafter). Fish is considered as a useful indicator to
assess the ecological health of water bodies “. . . since they respond predictably to changes in both
abiotic factors, such as habitat and water quality, and biotic factors, such as human exploitation
and species additions (Davis and Simon 1995)” (Hascic and Wu (2006), p. 218). Oberdorff
et al. (2002) also note that “among potential indicators, fish assemblages are of particular interest
because of their ability to integrate environmental variability at different spatial scales” (p.1720).
The originality of the fish-based index is related to the use of multiple metrics based on occurrence
data as well as on abundance data. The metrics based on abundance data account for regional
and local environmental factors (Oberdorff et al. (2002)). Such an index is built in France for a
large number of well-defined sites evenly distributed across all available types of rivers monitored
from 2001 to 2013.

Land use changes that trigger the degradation of water quality come either from agricultural
production or from urbanization. One strand of the literature (among others, Wu and Segerson
(1995), Wu et al. (2004), and Atasoy et al. (2006)) measures the effects of sectoral activities on the
extent of water pollution. Regarding agricultural land use, Wu and Segerson (1995) have proposed
an empirical model to quantify the extensive margin effects of alternative agricultural policies on
“potential” groundwater pollution2 in Wisconsin in the U.S. The estimated acreage responses are
used to evaluate the potential pollution along with information on the joint distribution of crops
and land quality. In a different vein, Wu et al. (2004) have used simulated environmental data3 to
measure the extent of water pollution due to agricultural runoff for 42 000 agricultural sites in the
upper-Mississippi river basin in the U.S. In a first step, a model of crop choice and tillage practice
is estimated. In a second step, environmental production functions (nitrate leaching and runoff,
water and wind erosion) are estimated by regressing the simulated environmental data on the

1Indice Poissons Rivière (IPR) in French.
2The amount of acreage that is vulnerable to pollution (by land characteristics) and that grows a chemical-

intensive crop is assumed to measure the groundwater pollution.
3The methodology used is “metamodelling” as in Wu and Babcock (1999).
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vector of crop management practices and land quality. This framework enables them to evaluate
the effect of crop management practices on the estimated environmental production functions.
These papers use either an approximate pollution indicator or simulated environmental data, and
not effective pollution, to measure the extent of water pollution. In contrast, as concerns urban
land use, Atasoy et al. (2006) have proposed a spatial econometrics model to estimate the impact
of residential development on water quality4 in the upper Neuse River and its tributaries in the
U.S. They have found that both the density of residential land use and the rate of land conversion
have a negative impact on water quality.

Another strand of the literature analyzes the link between alternative land uses and indicators
of water quality (among others, Hascic and Wu (2006), Langpap et al. (2008), Fiquepron et al.
(2013), Abildtrup et al. (2013), Martinuzzi et al. (2014), and Fezzi et al. (2015)).5 The case
of the U.S. is studied by Hascic and Wu (2006), Langpap et al. (2008), and Martinuzzi et al.
(2014), the case of Great Britain by Fezzi et al. (2015), and the case of France by Fiquepron et al.
(2013) and Abildtrup et al. (2013). Hascic and Wu (2006) have proposed an econometric model
that estimates the impact of alternative land uses6 on the chemical and ecological status of water
quality. The analysis is applied to a cross-section of 2100 watersheds in the lower 48 states of the
U.S. The chemical status of water quality is represented by the conventional ambient water quality
and the toxic ambient water quality. The empirical analysis is also carried out to measure how
the two predicted values of water pollution indicators along with a vector of land-use and habitat
variables, affect the ecological status of watersheds.7 The estimation results, based on the negative
binomial (NB2) model, indicate that only the conventional water pollution variable has a positive
and significant effect on the number of endangered species in an average watershed. Langpap et al.
(2008) have extended the work of Hascic and Wu (2006) by estimating a land use choice model on
pooled data. The multinomial logit model explains the determinants of alternative land uses in 4
states in the U.S.8 Langpap et al. (2008) have also estimated three NB2 models of water health’s
indicators (the same indicators as used in Hascic and Wu (2006)9). The estimations results show
that watersheds with more urban land relative to forest area are associated with more species at
risk.

As concerns the case of France, Fiquepron et al. (2013) estimate a system of simultaneous
equations to assess the impact of alternative land uses on two measures of chemical status of
water quality (pesticides, nitrates), and on the price of drinking water in France. This analysis is
carried out for 93 Departments in France. They have shown that the forest land use has a positive
effect on raw water quality compared to other land uses. This, in turn, induces a decrease in
the price of drinking water. Abildtrup et al. (2013) obtain similar results in their reduced model
of cost of drinking water estimated for 232 water supply services in the Vosges Department in
France. They estimate a spatial econometric model to take into account the effects of the land
uses by neighbor water services on the cost of drinking water of a given water supply service.

The previous work on France has studied exclusively the effects of land uses on the chemical
status of water quality. In this work, we close the gap in the literature by analyzing how alternative
land uses affect the ecological status of water quality. To this end, we estimate the effects of
land uses on the fish-based index which is an indicator of the ecological status of water bodies.

4Three measures of water quality considered are total nitrogen (TN), total phosphorus (TP), and total suspended
solids (TSS).

5There exist also an empirical literature that explains terrestrial biodiversity by alternative land uses, see for
instance Lewis and Plantinga (2007) on habitat fragmentation, and Ay et al. (2014) on bird populations.

6Land-use categories considered are: Cultivated cropland, non-cultivated cropland, forest land, pasture land,
rangeland, urban land, rural transportation land, minor land (comprising mining land and land concerned by the
Conservation Reserve Program), and federal land.

7The ecological status is measured by the species-at-risk indicator, more precisely by the number of aquatic and
wetland species at risk of extinction in a given watershed.

8These determinants are the returns of five land uses (range land, urban land, agricultural land, forest land and
other) and the indices of local land use regulations.

9Unlike Hascic and Wu (2006), the indicators of chemical water pollution do not directly enter in the equation
to estimate the species-at-risk indicator.
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As these effects are conditional to the location of water body and to its climatic and edaphic
characteristics, it is important to take into account the spatial heterogeneity of the fish-based
index in the econometric strategy. To this end, unlike the previous literature, we use a spatial
panel data model to explain the score of the fish-based index registered for various monitoring
points in France observed between 2001 and 2013. This model allows us to control for both spatial
autocorrelation and unobserved individual heterogeneity which may influence water quality. The
explanatory variables considered are five land uses (agriculture, forest, pasture, urban and other),
climatic and edaphic factors as well as information on terrain relief. The spatial resolution chosen
is the hydrographic sector10 which is the most appropriate one for observing fish populations in
rivers. We will discuss the implications of the results for the design of agricultural and land use
policies that improve the health of freshwater ecosystems.

This national-scale, hydrographic sector-level analysis aims to answer the following questions:
(i) Do land-use, habitat and environmental variables explain the spatial heterogeneity of the fish-
based index in France? (ii) What land uses, at the expense of others, are at the origin of the
degradation of river ecosystems in France? (iii) Do spatial dependences in the score of the fish-
based index exist? (iv) To what extent is the score of this index affected by spatial interactions?

In what follows, we provide an overview of the state of freshwater fish resources in France
and describe the fish-based index in Section 2. Section 3 sets out the empirical model and the
estimation method. Section 4 describes the data, and presents the estimation results. Section 5
summarizes our main results and draws some policy conclusions.

2 Freshwater Fish in France

2.1 Context

Freshwater fish are not only important for biodiversity concerns but also in economic terms. The
volume and value of catches of commercial inland fisheries amount to 1186 tons and €10 470
000 respectively (2007-2008 average). The average price of these catches is €8.8 per kg, with a
significant contribution of glass eel and adult eels. The commercial catches of inland fisheries is
marked by a strong specialization in ells in France. The sector is specialized in small-scale fishing:
the number of fishing boats is 621 with an average size of 6 m and average power of 40 HP. Fish
are caught from Alpine lakes, Loire, Gironde, Adour and Rhône estuaries and rivers. Even though
the share of commercial inland fishing in national catches is small, namely 0.2%, the sector offers
specially niche market products, such as ells, mostly to local and regional markets (Ernst&Young
(2011)). The main species in catches are houting, lamprey, eel, perch and white fish (International
(2009)).

The French exports of freshwater fish including trout, salmon and eel amount to €226 million
in 2013 (FranceAgriMer (2014)) (for a comparison, the exports of marine fish are €713 million
in 2013). The most important species in terms of exports is eel whose catches represent 65 to
70% of European production. Indeed, France is the first producer of eels in Europe. The farmed
production of eels is non existent in France (EU report). Since 60s, there has been a decreasing
trend in the stocks of eels due to alterations of habitat and pollution problems. This is why this
species is classified in Annex II of the list of CITES as a species whose trade should be controlled.
Since 2010, the exports of eels outside of the EU is forbidden. Domestic demand has dropped
too due to Polychlorinated biphenyl (PCB) pollution concerns in eels. French authorities, such
as ANSES (French Agency for Food, Environmental and Occupational Health & Safety) have

10A hydrographic sector is a subdivision of the river basin districts (“bassin versant” in french) established in
the EU Water Framework Directive. France is divided into six river basin districts: Rhône-Méditerranée-Corse,
Rhin-Meuse, Loire-Bretagne, Seine-Normandie, Adour-Garonne and Artois-Picardie. They correspond respectively
to five large rivers (Rhône, Rhin, Loire, Seine et Garonne), and la Somme river. A hydrographic sector represents
a smaller area than a hydrographic region. There are 187 hydrographic sectors in metropolitan France. See Figure
1 in the Appendix. This geographical scale has been used in other studies of water quality (Lungarska and Jayet,
2014).
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recommended the non consumption of freshwater species most accumulated with PCB pollution
(namely, eel, barbel, bream, carp, sheatfish). Large retailers do not offer any eels in France due
to these information campaigns. Despite decreasing supply of eels, prices have been low, around
€8.4 per kg due to the decreasing trend in demand.

More generally, the freshwater fish populations in France have suffered from the degradation
and destruction of natural environments as well as from pollution problems. The inventory of
the Red List of Threatened freshwater species in France, conducted by the International Union
for Conservation of Nature (IUCN) French National Committee and the National Museum of
Natural History indicates the following: 15 freshwater fish species over 69 are threatened, 4
species are critically endangered, 2 species have disappeared at the global level and 2 species
have been extincted at the France metropolitan. The species which have been extincted at the
France metropolitan are Spanish toothcarp and Valencia toothcarp, and those that are critically
endangered are sturgeon, european eel, Chabot du Lez, and Rhone streber (UICN France (2010)).

2.2 Fish-based index

Fish-based index employs seven metrics to calculate the current index score at a site which is then
compared to the score which would prevail at the reference situation (at the absence of stress).
The value of the index includes the sum of the deviations from the reference of the following seven
metrics:

- Total number of species
- Number of lithophilic species (which require clean gravel substrates for reproductive

success)
- Number of rheophilic species (which inhabit in lotic areas)
- Total density of individuals (which measures individual abundance)
- Density of tolerant species (species having a large water quality and habitat flexibility)
- Density of invertivorous species (species which mainly feed on invertebrates)
- Density of omnivorous species (species that can digest considerable amounts of both plant

and animal foods).
The more the fish population is close to the reference situation, the lower the value of the

index. The index varies from 0 (meaning that the reference situation prevails) to the infinity. In
practice, FBI rarely exceeds 150 in the more altered stations.

SOeS (2012) draws a description of the evolution of this index over the period 2001 to 2010.11

It is highlighted that slightly more than half of the monitoring points have good or a very good
quality, except in 2003, which is marked by exceptionally high temperatures and particular hy-
drological conditions. The report notes that the index stayed relatively constant over the period
of consideration. However, in order to meet the water quality standards of the European Wa-
ter Framework Directive, additional efforts should be undertaken. There exists a high degree of
heterogeneity in the score of the fish-based index for the six river basin districts. Artois-Picardie
appears to be the river basin district with the highest number of points with low ecological qual-
ity. The Seine-Normandie is in the best position. In fact, upstream points are usually in a better
situation than downstream ones. The big river basin districts suffer more from human-induced
disturbances. Coastal water bodies are more preserved.

SOeS (2012) provides some explanations for the spatial heterogeneity of the FBI index for wa-
tersheds in France. Artois-Picardie watershed is a very populated one, receiving human-induced
pressures from industrialization and intensive agriculture. In Rhin-Meuse watershed, the FBI score
indicates a better quality in the regions with more forest land. Regarding the Seine-Normandie

11Note that the stations where measures are made have evolved through time. In the period 2001- 2004, data
only cover RHP (Réseau Hydrobiologique et Piscicole) while data also concern reference situation in the period
2005-2006. This explains the over-estimation of points with very good quality in the latter period. Finally, the
number of monitoring stations has almost doubled after 2007, which decreased the preponderance of points with
very good quality.
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watershed, the quality of water is worst in the center regions, namely in Picardie and Région
Parisienne. The human-induced pressures mainly come from urban development and intensive
agriculture. The latter factor is also at the origin of the degradation of the river basin qual-
ity in Loire-Bretagne watershed. Adour-Garonne watershed is negatively affected by the hydro-
electricity and intensive agricultural production. FBI scores best at the regions with more forest
land and grassland. Rhône-Méditerranée watershed suffers from urban development, dam con-
struction, and from hydro-electricity production.

Our objective is to check if the precedent insights provided by SOeS (2012) could be validated
by data. To this end, we estimate a spatial panel data model covering the period 2001-2013 for
the sites included in the FBI index.

3 The empirical model

In order to assess the impact of pedo-climatic variables as well as land uses on the quality of
water, we estimate an econometric model explaining observed FBI at a monitoring point located
throughout French rivers as a function of land use, land quality and climate to each monitoring
point. By using spatial tools, we control for any spatially correlated unobserved factors which
may influence water quality. We assume that FBIit in location i at time t (i = 1, ..., N and
t = 1, ..., T ) is generated according to the following model:

FBIit = xitβ + vit, (1)
vit = µi + εit, (2)

where xit is a k × 1 vector of observed regressors on the ith cross-section unit at time t, µi is the
random individual effect of location i assumed to be IID(0, σ2µ), and vit is an IID12 error term
with zero mean and variance σ2v .

3.1 Random-effects vs fixed-effects

Conditional on the specification of the variable µi, the model can be estimated as fixed or random
effects model. In the fixed-effects (FE) model, a dummy variable is introduced for each spatial
unit as a measure of the variable intercept. In the random-effects (RE) model, the variable µi is
treated as a random variable that is IID with zero mean and variance σµ.

The random effects specification assumes that E(µixit) = 0 and E(µiεit) = 0 for all i and t. If
the hypothesis that the individual-specific component is orthogonal to the explanatory variables
does not hold, estimates from the RE model suffer from possible bias due to the correlation
between the error term and the regressors.

The choice between the (RE) or the (FE) specification depends on the model and data.13

In a spatial setting, using individual fixed effects might induce an incidental parameter problem
as the asymptotics in the cross-sectional dimension is necessary.14 In addition, in a FE model,
time-invariant spatial clusters will be "swept away" by the within estimator and the associated
coefficient cannot be identified. For this reason we choose to model individual effects through
random effects. This choice imposes that the individual effects are independent of exogenous
regressors.

3.2 Spatial specification

The standard approach in most spatial analyses is to start with a non-spatial linear regression
model and then to test whether or not this model needs to be extended with spatial interaction

12Independent and identically distributed.
13See Hsiao (1986) and Baltagi (1995) for a discussion on the choice between random effects and fixed effects

models in the non spatial case and Lee and Yu (2010b) in the spatial case.
14See Lee and Yu (2010a) for a recent overview on the estimation of spatial panel models.
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Model name Model presentation

SEM FBIit = xitβ + µi + εit
εit = λWεit + uit

SAR FBIit = ρWFBIit + xitβ + µi + εit

Table 1: Spatial autocorrelation models tested

effects. This approach is known as the specific-to-general approach, which we adopt in this paper.
Starting with a standard linear regression model, three different types of interaction effects could be
introduced in a spatial econometric model: endogenous interaction effects among the dependent
variable (FBI) known as the spatial autoregressive (SAR) model, exogenous interaction effects
among the independent variables (X) known as the spatial lag of X (SLX) model, and interaction
effects among the error terms (ε) called the spatial error model (SEM). The three models (SAR,
SEM, SLX) could be combined to have the SDM and SAC models. We focus on the SEM and
SAR spatial models.

3.3 Weight matrix

Neighbor relationships are defined by the elements of the weight matrixW . A variety of weighting
schemes could be considered and the choice depend on the data and the estimated model. We
consider the neighbor matrix based on contiguity rule and row-normalized.

4 Data description and estimation results

4.1 Data description

In our study, we combine information on fish population (the FBI index), climate, edaphic con-
ditions, terrain relief, and land use. Summary information on the data is provided in Table 2.
FBI values are aggregated (average values) at the scale of the hydrographic sector 15. There is
information for each year for 122 sectors (represented on Figure 2). Land uses are derived from
the Corine Land Cover (CLC) and represented by aggregated land use classes for agriculture,
pastures, forest, urban, and other uses. The share of each land use is evaluated at the scale of the
hydrographic sector. Edaphic conditions are given by the topsoil texture and the subsoil available
water capacity (Panagos et al., 2012). For instance, variable TXT1 represents the share of the
soil texture class 1 at the hydrographic sector, class 1 being the worst one in terms of soil quality.
In the same way, variable AWC1 is the share of the available water capacity class 1 at the hy-
drographic, with again class 1 representing the worst one. Climate is summarized by the annual
average temperature. Terrain relief is given by altitude and slope. Land use data are available
only for some of the years covered by our study. The intermediate values are thus interpolated
with respect to observation.

15We are using the terms hydrographic sector and hydrosector interchangeably.
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Variable Definition Unit Year

FBI FBI index value for the observa-
tion

- 2001, ..., 2013

Scale: point;
Source: Oberdorff et al. (2002),
The French National Agency
for Water and Aquatic Environ-
ment, ONEMA.

t Annual average temperature ◦C 1990, ..., 2013
Scale: 8 x 8 km grid;
Source: Météo France.

TXT1, ..., TXT5 Share of the texture class in the
hydrographic sector

% Invariant

AWC1, ..., AWC5 Share of the available water ca-
pacity class in the hydrographic
sector

% Invariant

Scale: 1:1,000,000;
Source: Panagos et al. (2012),
European Union Joint Research
Center, JRC.

slope Slope % Invariant
Scale: 30 arc sec (∼ 1 km);
Source: GTOPO30.

Land use classes
• agr Agriculture share % 1990, 2000, 2006,

2012• pst Pasture share
• for Forest share
• urb Urban share
• oth Other

Scale: 1 ha;
Source: Corine Land Cover.

Table 2: Data description
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4.2 Estimation results

In order to compare the estimations and to evaluate the gains associated with allowing for spatial
autocorrelation as well as for individual heterogeneity (in the form of random individual effects)
we consider the following estimators:

1. The pooled OLS, which ignores individual heterogeneity and spatial auto-correlation.

2. The RE (Random-Effects) estimator of a standard panel data model with random effects.
This estimator accounts for random individual effects but takes into account neither spatial
autocorrelation nor correlation across equations.

3. The SEM (Spatial Error Model) which takes into account the autoregressive spatial error
autocorrelation but ignores individual heterogeneity.

4. SEM-RE estimator, which accounts for both spatial error autocorrelation and random indi-
vidual heterogeneity.

5. The SAR (Spatial Autocorrelation Model) which takes into account the autoregressive effects
between the dependent variable across the spatial units, but does not account for individual
heterogeneity.

6. SAR-RE estimator, which accounts for both spatial autocorrelation in dependent variable
and random individual heterogeneity.

The detailed results for the estimated models are provided in the Appendix. We start by
estimating the pooled OLS model (Table 3). The Moran’s I statistic associated with this model
specification and the contiguity neighbors matrix is significant at the 1% confidence level. Thus,
the FBI scores are potentially subject to spatial autocorrelation. Consequently, we estimate two
alternative model specifications accounting for the spatial autocorrelation. Both the SEM and
the SAR models (Table 5, 7 and 8) have significant spatial autocorrelation coefficients, λ and ρ
respectively. This result indicates that the estimation results from the OLS model which ignores
spatial autocorrelation are biased. The coefficients of land use classes are significant for the two
models. The estimates presented in Tables 5 and 8 indicate that the urban land use is affecting the
most the FBI value (highest coefficient for this land use). We should remind here that the higher
the FBI value, the greater is the difference between the reference situation and the observed fish
population. Hence, our estimation results suggest that urban development tends to degrade more
freshwater bioversity than the other land uses.

The estimation of the SEM and the SAR models (Table 5, 7 and 8) also shows that the effects
of the slope and temperature on the FBI score are significantly negative. This means that low
FBI values are associated with steep topography and high temperatures. The positive effect of
temperature on freshwater biodiversity could be related to individual hetorogeneity: southern
regions (with high average temperatures) have less intensive agriculture activities, hence less
pollution in rivers compared to northern regions. The estimation results also show that the soil
quality is generally not significant (except TXT1 in some specifications) while the subsoil available
water capacity is. The estimation of the SEM and the SAR models points out that the positive
coefficient of AWC1 is always larger than that of AWC5. This means that better subsoil water
capacity degrades less the freshwater biodiversity. More the subsoil has the ability to retain water,
less will be leaching and pollution problems in rivers. Direct effects for the SAR model are all
significant except for the soil texture class variables TXT2, TXT3 and TXT4 (Table 9). This is
also the case for the indirect and total effects as Tables 10 and 11 show.

The RE model (no spatial autocorrelation, Table 4) reports that an important fraction of the
variance is due to the differences across panels. The sole significant and positive land use coefficient
in this model is the one associated with the urban use. The subsoil water capacity has also a
significant effect on the FBI value. When we take into account both the spatial autocorrelation
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and the individual heterogeneity, the SEM-RE model (Table 6) performs better than the SEM
model (Table 5). Both λ and θ are significant. The value of θ is close to 1 meaning that the
most of the information is contained in the within estimator. For this model, the coefficients for
agricultural and other land uses are not significant while those for urban and pasture land are.
Slope, temperature, and soil texture classes are not significant (except the first texture class),
while subsoil water capacity classes are significant. The SAR-RE model (Table 12) performs
slightly better in terms of log likelihood than the SEM-RE model (Table 6). The value of θ for
the former model is also significant but lower. The urban and pasture land uses, and the subsoil
water capacity have a significant positive impact on the FBI value.

5 Conclusion

In the IUCN Red List of Threatened Species published in 201216, France ranks fifth in the world
for hosting the largest number of endangered plant and animal species. Regarding freshwater
ecosystems, their degradation is represented by a decline in the quality and quantity of water, and
by changes in the distribution and structure of aquatic biota for some rivers in France (Oberdorff
et al. (2002)). The French freshwater fish populations have suffered from the degradation and
destruction of natural environments as well as from pollution problems. This has led us to ask
what land uses are at the origin of the spatial heterogeneity of freshwater ecosystems in France.
To this end, we estimated a spatial panel data model to measure the effects of alternative land uses
on a selected indicator of the ecological status of surface water, namely a fish-based index. This
model allows us to control for both spatial autocorrelation and unobserved individual heterogeneity
which may influence water quality. We studied the value of the index in various French rivers at
the level of hydrographic sectors observed between 2001 and 2013.

Our preliminary estimation results first reveal that spatial autocorrelation coefficients are
significant. This means that there are spatial interactions in the value of the fish-based index,
and ignoring them would lead to biased estimates. Secondly, our results indicate that the urban
land is the land use with the greatest adverse impact on freshwater fish populations. Hence, these
results suggest that urban development tends to degrade more freshwater biodiversity than the
other land uses. Finally, our estimations show that better freshwater biodiversity is associated
with steep topography and high temperatures.

Further work is needed to study the following aspects. We first plan to use a different weight
matrix for spatial interactions which takes into account the upstream and downstream points
at the level of hydrographic sectors (Atasoy et al. (2006)). We will also study the effects of
the exceptional drought that took place in 2003 on the value of the fish-based index. Another
extension is to test the predictive power of our model for the year 2013, by estimating it for the
period 2001-2012. Our ultimate aim is to discuss the implications of our results for the design
of land use policies, such as urban zoning or agro-chemicals tax policies, that could improve the
health of freshwater ecosystems. This discussion is important given the necessity for France to
comply with the ecological objectives of the European Union Water Framework Directive.

16http://www.iucn.org/
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Appendices

Figure 1: Hydrographic sectors and River bassin districts (RBD, water agencies) in France

Figure 2: Hydrographic sectors and neighbor relations
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Dependent Variable – FBI

Variable Coefficient t-statistic t-probability

constant -7.438301 -0.811752 0.417057

Slope -0.312818 -4.222254 0.000026

TXT1 22.221365 2.696912 0.007073

TXT2 14.105795 1.779235 0.075395

TXT3 12.586843 1.651005 0.098937

TXT4 10.694753 1.373719 0.169725

AWC1 20.613727 7.590725 0.000000

AWC3 19.415048 7.092030 0.000000

AWC4 12.388609 5.694745 0.000000

AWC5 10.326612 3.855989 0.000120

t -0.572336 -3.472110 0.000530

agr 5.348438 3.259786 0.001139

pst 7.309840 3.962582 0.000077

urb 34.980648 4.750370 0.000002

oth 16.303870 3.478211 0.000519

R-squared = 0.1095

Rbar-squared = 0.1015

σ2 = 44.5282

Durbin-Watson = 1.4850

Nobs, Nvars = 1586, 15

Moran’s I test = 0.1792, H0 probability = 0

Table 3: Ordinary Least-squares Estimates
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Dependent Variable – FBI

Coef. Std. Err. z P>|z| [95% Conf. Interval]

constant 33.17905 37.91925 0.87 0.382 -41.14131 107.4994

Slope -.1625688 0.1891438 -0.86 0.390 -0.5332838 0.2081462

TXT1 -24.29879 37.10904 -0.65 0.513 -97.03117 48.43358

TXT2 -34.73945 37.42375 -0.93 0.353 -108.0886 38.60976

TXT3 -33.51741 36.58624 -0.92 0.360 -105.2251 38.1903

TXT4 -36.15189 36.96529 -0.98 0.328 -108.6025 36.29873

AWC1 25.29604 8.011504 3.16 0.002 9.593785 40.9983

AWC3 22.43901 7.852149 2.86 0.004 7.049077 37.82893

AWC4 15.618 6.333761 2.47 0.014 3.204057 28.03195

AWC5 10.7814 7.534955 1.43 0.152 -3.986836 25.54964

t -0.0666236 0.3227135 -0.21 0.836 -0.6991305 0.5658833

agr 3.398396 4.848217 0.70 0.483 -6.103936 12.90073

pst 5.798709 5.285086 1.10 0.273 -4.559869 16.15729

urb 39.8174 22.34316 1.78 0.075 -3.97439 83.60919

oth 5.86615 13.85592 0.42 0.672 -21.29096 33.02326

σu 5.2484778

σe 4.750234

Interclass 0.54970738 (fraction of variance due to ui)
correlation

R-sq:
within 0.0041 Wald χ2 (14) 28.83
between 0.1950 corr(ui, X) 0 (assumed)
overall 0.1225 Prob > χ2 0.0110

Table 4: Random-effects GLS regression
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Dependent Variable – FBI

Variable Coefficient t-stat probability

constant 0.402528 0.043439 0.965352

Slope -0.341204 -3.869768 0.000109

TXT1 12.705221 1.551204 0.120853

TXT2 6.707693 0.842249 0.399649

TXT3 5.730441 0.740894 0.458758

TXT4 2.349118 0.295030 0.767971

AWC1 14.533713 4.998511 0.000001

AWC3 16.918103 5.986646 0.000000

AWC4 11.586969 5.204175 0.000000

AWC5 7.880436 2.904474 0.003679

t -0.668858 -3.127307 0.001764

agr 9.249959 5.357404 0.000000

pst 11.292615 5.578202 0.000000

urb 28.819483 3.914568 0.000091

oth 28.713942 5.784481 0.000000

λ 0.403117 4.427677 0.000010

R-squared 0.1999

Rbar-squared 0.1927

GM σ2 39.7212

σ2 39.6301

Nobs, Nvars 1586, 15

Table 5: SEM: Generalized Moments Estimation of Spatial Error Model
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Dependent Variable – FBI

Variable Coefficient Asymptot t-stat z-probability

constant -35.143311 -1.602578 0.109028

slope -0.052129 -0.309753 0.756749

TXT1 38.848604 1.884867 0.059448

TXT2 27.747289 1.397467 0.162273

TXT3 25.925479 1.359437 0.174008

TXT4 25.435806 1.312037 0.189508

AWC1 23.181073 3.298804 0.000971

AWC3 22.915428 3.220442 0.001280

AWC4 14.384432 2.573129 0.010078

AWC5 15.936419 2.350892 0.018728

t 0.305652 1.238132 0.215667

agr 3.209854 0.736469 0.461445

pst 8.030179 1.657975 0.097323

urb 50.325898 2.764300 0.005705

oth 6.938818 0.611459 0.540896

λ 0.213675 5.351218 0.000000

θ 0.963502 7.111260 0.000000

R-squared 0.5455

corr-squared 0.0911

σ2 22.5087

Nobs,Nvar 1586, 15

log-likelihood -4884.8961

Table 6: SEM-RE: Pooled model with spatial error autocorrelation and spatial random effects
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Dependent Variable – FBI

Variable Coefficient Asymptot t-stat z-probability

constant 0.822584 0.089152 0.928961

slope -0.342851 -3.829603 0.000128

TXT1 11.964826 1.470881 0.141323

TXT2 6.111653 0.771624 0.440337

TXT3 5.178569 0.672457 0.501293

TXT4 1.582819 0.199527 0.841850

AWC1 14.086251 4.837639 0.000001

AWC3 16.711162 5.929509 0.000000

AWC4 11.529976 5.195277 0.000000

AWC5 7.708500 2.853672 0.004322

t -0.668786 -3.050860 0.002282

agr 9.698135 5.611798 0.000000

pst 11.830462 5.807797 0.000000

urb 28.414985 3.883738 0.000103

oth 29.860190 6.010034 0.000000

λ 0.440954 13.590973 0.000000

R-squared 0.0929

corr-squared 0.0955

σ2 38.7953

log-likelihood -5183.7989

Nobs,Nvar,#FE 1586, 15, 15

Table 7: SEM : Pooled model with spatial error autocorrelation, no fixed effects
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Dependent Variable – FBI

Variable Coefficient Asymptot t-stat z-probability

constant -9.543563 -1.099249 0.271660

Slope -0.254406 -3.622936 0.000291

TXT1 15.882940 2.032366 0.042117

TXT2 10.163756 1.353208 0.175989

TXT3 9.505721 1.316456 0.188021

TXT4 7.530800 1.021290 0.307117

AWC1 14.026536 5.355187 0.000000

AWC3 15.782927 6.061390 0.000000

AWC4 10.287517 4.985732 0.000001

AWC5 7.342736 2.887427 0.003884

t -0.456896 -2.925582 0.003438

agr 6.357376 4.092912 0.000043

pst 8.038776 4.605442 0.000004

urb 30.128810 4.316324 0.000016

oth 19.468218 4.385462 0.000012

ρ 0.380989 12.642222 0.000000

R-squared 0.0982

Rbar-squared 0.0902

σ2 39.8025

Nobs, Nvars 1586, 15

log-likelihood -4645.2137

Table 8: SAR : Spatial autoregressive Model Estimates
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Direct Coefficient t-stat t-prob lower 01 upper 99

Slope -0.262986 -3.589942 0.000341 -0.446140 -0.109653

TXT1 16.215906 2.053694 0.040169 -4.000597 34.828633

TXT2 10.287518 1.360598 0.173834 -10.220248 28.286205

TXT3 9.636180 1.328718 0.184132 -8.794489 27.182521

TXT4 7.670016 1.031457 0.302484 -11.874460 25.624961

AWC1 14.489330 5.197862 0.000000 7.254987 21.616689

AWC3 16.249906 5.842998 0.000000 8.678265 23.179715

AWC4 10.608792 4.759029 0.000002 4.325034 15.916627

AWC5 7.541558 2.720444 0.006591 0.231220 14.293188

t -0.469623 -2.875557 0.004087 -0.886515 -0.059722

agr 6.630084 4.041392 0.000056 2.517298 10.602779

pst 8.411621 4.592223 0.000005 3.434474 12.845518

urb 30.929278 4.376706 0.000013 11.217390 47.530677

oth 20.111527 4.553169 0.000006 9.390131 31.229027

Table 9: SAR : Direct effects

Indirect Coefficient t-stat t-prob lower 01 upper 99

slope -0.150186 -3.355936 0.000810 -0.273977 -0.059768

TXT1 9.258515 1.995395 0.046171 -2.283834 20.713030

TXT2 5.879615 1.335346 0.181955 -5.761310 16.796808

TXT3 5.515553 1.303462 0.192606 -5.566361 16.751048

TXT4 4.388114 1.015915 0.309825 -7.581830 15.606926

AWC1 8.263252 4.732009 0.000002 4.155594 13.062374

AWC3 9.283592 4.973262 0.000001 5.059055 14.118791

AWC4 6.065426 4.177756 0.000031 2.693069 10.105774

AWC5 4.300806 2.611404 0.009102 0.125611 8.941905

t -0.268088 -2.758320 0.005877 -0.535506 -0.035723

agr 3.795507 3.601245 0.000326 1.278073 7.116728

pst 4.817088 3.985422 0.000070 1.894519 8.073660

urb 17.696764 3.867609 0.000114 6.796883 30.033102

oth 11.507852 4.032788 0.000058 5.070892 19.889034

Table 10: SAR : Indirect effects
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Total Coefficient t-stat t-prob lower 01 upper 99

Slope -0.413172 -3.576201 0.000359 -0.706059 -0.164070

TXT1 25.474422 2.048005 0.040724 -6.284431 54.369520

TXT2 16.167134 1.357110 0.174939 -16.227975 45.721043

TXT3 15.151734 1.324868 0.185406 -13.635360 44.156086

TXT4 12.058130 1.028874 0.303696 -19.183124 40.131427

AWC1 22.752582 5.234001 0.000000 11.514441 33.932228

AWC3 25.533498 5.768429 0.000000 13.766355 36.936144

AWC4 16.674218 4.681997 0.000003 7.077126 25.541097

AWC5 11.842364 2.714074 0.006718 0.356832 23.265002

t -0.737711 -2.874403 0.004102 -1.415210 -0.096033

agr 10.425591 3.963368 0.000077 3.876654 17.535479

pst 13.228709 4.481725 0.000008 5.503805 20.660285

urb 48.626042 4.294862 0.000019 18.236048 74.654231

oth 31.619379 4.486063 0.000008 14.717835 49.339915

Table 11: SAR : Total effects
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Dependent Variable – FBI

Variable Coefficient Asymptot t-stat z-probability

constant -35.794514 -1.760628 0.078301

Slope -0.037230 -0.240139 0.810223

TXT1 35.119357 1.827746 0.067588

TXT2 26.152020 1.401440 0.161082

TXT3 25.243642 1.407388 0.159312

TXT4 24.308200 1.332140 0.182814

AWC1 17.473317 2.612345 0.008992

AWC3 19.082844 2.840833 0.004500

AWC4 12.943652 2.430809 0.015065

AWC5 12.261614 1.902314 0.057130

t 0.275171 1.353136 0.176012

agr 4.872257 1.215664 0.224113

pst 9.019610 2.012542 0.044163

urb 47.710434 2.803214 0.005060

oth 12.795058 1.154456 0.248313

ρ 0.242992 6.467484 0.000000

θ 0.287207 11.424163 0.000000

R-squared 0.5473

corr-squared 0.0927

σ2 22.4209

Nobs,Nvar 1586, 16

log-likelihood -4877.4783

Table 12: SAR-RE: Pooled model with spatially lagged dependent variable and spatial random
effects
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Variable Direct t-stat indirect t-stat total t-stat

Constant -37.6222 -1.9674 -11.7894 -1.7701 -49.4116 -1.9439

Slope -0.0414 -0.2598 -0.0128 -0.2572 -0.0542 -0.2601

TXT1 36.9845 2.0394 11.5683 1.8406 48.5528 2.0185

TXT2 28.0194 1.5750 8.7954 1.4630 36.8148 1.5631

TXT3 27.0474 1.5759 8.4893 1.4597 35.5368 1.5632

TXT4 25.9741 1.4896 8.1672 1.3979 34.1413 1.4810

AWC1 17.6839 2.5045 5.4673 2.2845 23.1512 2.5007

AWC3 19.2300 2.8966 5.9561 2.5502 25.1861 2.8834

AWC4 12.9249 2.4243 3.9873 2.2139 16.9121 2.4211

AWC5 12.1855 1.9032 3.7680 1.7626 15.9535 1.8933

t 0.2729 1.3136 0.0838 1.2670 0.3567 1.3136

agr 4.9332 1.1741 1.5446 1.1262 6.4777 1.1709

pst 9.3030 1.9965 2.8982 1.8138 12.2012 1.9785

urb 49.4130 3.0543 15.4276 2.5181 64.8406 2.9894

oth 13.2611 1.1565 4.1521 1.1053 17.4132 1.1532

Table 13: SAR-RE: Direct, indirect and total effects
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