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Abstract

This paper compares the quality of forecasts from DSGE models with and without
financial frictions. We find that adding frictions affecting firms tends to improve the
quality of point forecasts while the opposite is true if frictions are introduced into the
household sector. However, neither of these modifications offers a cure for bias and
rather badly calibrated density forecasts. Still, there are complementarities among
the analyzed setups that can be exploited in the forecasting process, especially in
the periods of sharp contraction in economic activity.
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1 Introduction

During the last decade, dynamic stochastic general equilibrium (DSGE) models have

become the workhorse framework in both academic and policy circles. Following advances

in Bayesian estimation methods, these models started to be used not only for business

cycle and policy analyses, but also for forecasting (see Del Negro and Schorfheide, 2012,

for a review). A number of papers have evaluated the accuracy of point forecasts generated

by DSGE models and found that they are at least competitive in comparison to time series

models or even professional forecasters (see e.g. Smets and Wouters, 2003; Adolfson et al.,

2007; Rubaszek and Skrzypczynski, 2008; Edge et al., 2010; Edge and Gurkaynak, 2010;

Kolasa et al., 2012; Wieland and Wolters, 2012). However, it has also been pointed out

that the accuracy of DSGE model-based forecasts is rather poor in the absolute sense: the

correlation of realizations and forecasts tends to be low and in some cases even negative.

Moreover, a few recent studies have indicated that density forecasts obtained from DSGE

models are usually badly calibrated (Herbst and Schorfheide, 2012; Kolasa et al., 2012).

Finally, yet another weakness of DSGE models was exposed during the recent crisis as

their predictions were clearly at odds with the observed output collapse.

One of the reasons for these failures could be that a standard DSGE setup assumes

frictionless financial markets and, importantly in the context of the recent financial crisis,

does not include housing. A growing body of literature has responded to this deficiency

by adding financial frictions to the standard framework, usually building upon concepts

proposed before the crisis. This trend has also affected the structure of models developed

by central banks and other policy-making institutions (Gerke et al., 2013). However, the

literature on the effect of these modeling developments on the forecasting performance

of DSGE models is very incomplete as, if anything, the contributing papers only report

marginal likelihoods for the considered alternative specifications. One of very few ex-

ceptions is Christiano et al. (2011), who demonstrate that augmenting a medium-sized
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DSGE model of the Swedish economy with frictions á la Bernanke et al. (1999) increases

the accuracy of point forecasts. It is not clear, however, if the reported differences are

statistically significant and density forecasts are not discussed at all.

In this paper we investigate to what extent adding financial frictions can contribute

to an improvement in the quality of DSGE model-based forecasts. To this end, we con-

sider two extensions to the benchmark New Keynesian setup, exemplified by the work of

Del Negro et al. (2007), both of which can be considered the state of the art for modeling

frictions affecting respectively non-financial firms and households. More specifically, the

first addition introduces frictions between firms and banks using the financial accelerator

setup developed by Bernanke et al. (1999). The second extension follows Iacoviello (2005)

and incorporates housing and collateral constraints into the household sector. We next

analyze the performance of point and density forecasts generated by the three variants of

the model, as well as by their equally weighted pool.

We find that accounting for financial frictions affecting firms tends to improve the

quality of point forecasts while the opposite is true for the extension with household

sector financial frictions. Overall, neither of these modifications to the standard DSGE

framework offers a spectacular remedy for the deficiencies pointed out by the earlier

literature. In particular, the augmented models still generate point forecasts that can

be considered poor in the absolute sense and rather badly calibrated density forecasts.

However, there seem to be interesting complementarities among the analyzed setups that

can be exploited in the forecasting process as pooling the predictions from all models

usually results in better point and density forecasts. These gains can be particularly

substantial in the periods of sharp contraction in economic activity, like the one observed

during the recent financial crisis.

The rest of this paper proceeds as follows. Section 2 presents the models. The results

of the forecasting contest are discussed in section 3. The last section concludes. The
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detailed equations of the models, the description of the data and estimation issues are

reported in the Appendix.

2 The DSGE models

In this section we briefly describe the models that are used in our forecasting competition:

a baseline New Keynesian setup, its two extensions incorporating financial frictions, as

well as the pool of the models. A full list of models equations is presented in Appendix

A.

2.1 Baseline New Keynesian model (DSSW)

Our baseline New Keynesian DSGE model is identical to that documented by Del Negro

et al. (2007), which is essentially a slightly modified version of the microfounded setup

developed by Christiano et al. (2005) and estimated with Bayesian methods by Smets and

Wouters (2003). The model features a standard set of nominal and real rigidities that

have been found crucial for ensuring a reasonable data fit. These include: consumption

habits, investment adjustment costs, time-varying capacity utilization, as well as wage

and price stickiness with indexation. Government spending is exogenous and financed by

lump sum taxes, while the monetary policy is conducted according to the Taylor rule.

The model economy is driven by seven stochastic disturbances. Labor augmenting

technology is assumed to be a unit-root process and hence generates a common trend

in output, consumption, investment, capital and real wages. The remaining shocks are

stationary and disturb the rate of time preference, relative price of investment, disutility

of labor, price markup, government purchases and monetary policy.

The DSSW model is estimated with seven key macroeconomic time series: output,

consumption, investment, labor, real wages, inflation and the short-term interest rate.

The trending variables are expressed in growth rates.
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2.2 Financial frictions in the corporate sector (DSSW+FF)

The first extension of the baseline model introduces financial frictions into the corporate

sector. We use the financial accelerator framework developed by Bernanke et al. (1999),

except that, following Christiano et al. (2003), the financial contract is specified in nominal

terms. Our choice of the model specification is based on the results of Brzoza-Brzezina

et al. (2013), who indicate that this way of modeling frictions in financing firm investments

fits the US data better than the popular alternative based on collateral constraints as in

Kiyotaki and Moore (1997). The main features of the DSSW+FF extension are as follows.

Unlike in the baseline DSSW setup, capital is managed by an additional type of agents

– entrepreneurs. They possess special skills in operating capital and hence find it optimal

to borrow additional funds over net worth to finance their operations. Management of

capital is risky as entrepreneurs are hit by idiosyncratic shocks after they have signed a

debt contract with a bank. Depending on the shock draw, an entrepreneur may have or

not enough resources to repay the loan. In the latter case, she declares default and the

bank seizes all her assets, having paid a proportional auditing cost. Since entrepreneurs

are assumed to be risk neutral and banks are owned by risk averse households, the optimal

contract between these two parties isolates the latter from any aggregate risk. As regards

the banking sector, it is assumed to be competitive with free entry, which implies that each

bank breaks even in every period. Given that entrepreneurs are defined on a continuum

and hence the idiosyncratic risk can be fully diversified, the premium charged by banks

over the risk-free rate is just a compensation for auditing costs.

Compared to the baseline DSSW setup, there are two additional stochastic shocks

in the DSSW+FF model, affecting the standard deviation of idiosyncratic risk faced

by entrepreneurs and their survival rate. Including these shocks allows us to use two

additional time series while taking the model to the data. These are the growth rate of

loans to firms and the spread on loans to firms.
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2.3 Financial frictions in the household sector (DSSW+HF)

The second extension of the baseline DSSW model incorporates financial frictions affecting

households. It is based on Iacoviello (2005), who uses the Kiyotaki and Moore (1997)

framework to model collateral constraints in the housing market. Following Gerali et al.

(2010), we also allow for monopolistic competition in the banking sector, which results

in the spread between the interbank and loan rates. The main characteristics of the

DSSW+HF extension are summarized below.

In contrast to the DSSW benchmark, the household sector is not homogeneous, but

populated by two types of agents that differ in their rate of time preference. Impatient

households discount the future more heavily, hence are natural borrowers. Their borrowing

is constrained by the value of their housing stock, where the constraint is assumed to be

binding in every period. Apart from serving as a collateral, housing also provides utility

for both types of agents. The financial intermediation between patient and impatient

households is conducted by imperfectly competitive banks, which accept deposits at the

policy rate and offer loans at a rate reflecting their monopolistic power.

The DSSW+HF extension adds four new shocks to the DSSW setup. These concern

the housing weight in utility, loan-to-value ratio, relative price of residential investment

and markups in the banking sector. The corresponding four new variables used in estima-

tion are: residential investment, mortgage loans, house prices and the spread on mortgage

loans. The first three variables are expressed in growth rates.

2.4 Equally weighted pool

The last competitor in our contest is the equally weighted pool of all three model-based

forecasts, which we analyze just to check whether there are complementarities among the

analyzed setups that can be exploited in the forecasting process. A related question is

investigated by Wolters (2010), who finds that weighted forecasts of several standard (i.e.
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not including financial fricitons) DSGE models tend to be more accurate than forecasts

from individual models. His results also show that a simple pool of forecasts tends to

outperform forecasts obtained with more sophisticated weighting methods, which is in line

with the broader characterization of empirical results surveyed in Timmermann (2006).

Given these considerations and this paper’s main foucs, in what follows we report the

results only for the equally weighted pool.

3 Forecasts comparison

In this section we compare the quality of forecasts from the DSSW, DSSW+FF and

DSSW+HF models, as well as their equally weighted pool. Our investigation proceeds in

four steps.

First, we collect the following quarterly data describing the functioning of the US

economy in the period between 1970:1 and 2010:4: output, consumption, corporate in-

vestment, residential investment, labor, wages, house prices, inflation, the interest rate,

loans to firms, spread on loans to firms, mortgage loans and spread on mortgage loans.

The detailed description of the data definitions and sources is provided in Appendix B.

Second, we estimate all three DSGE models with standard Bayesian methods, where

the estimation details are outlined in Appendix C.

Third, we generate point and density forecasts for horizons up to 24 quarters ahead.

The forecasting scheme is recursive and the evaluation sample spans from 1990:1 to 2010:4.

More specifically, the first set of forecasts is generated for the period 1990:1-1995:4 with

models estimated on the sample spanning 1970:1-1989:4, the second set of forecasts is for

the period 1990:2-1996:1 with models estimated on the sample 1970:1-1990:1 etc. Since

our dataset ends in 2010:4, the forecasts are evaluated on the basis of 61 (for 24-quarter

ahead forecasts) to 84 (1-quarter ahead forecasts) observations.

Finally, we assess the quality of forecasts for the seven US macroeconomic time series
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that show up in all three model variants: output, consumption, investment, hours worked,

inflation, wages and the interest rate. Given that the maximum forecast horizon is rela-

tively long, the statistics are calculated for variables in levels rather than for growth rates.

While assessing the quality of forecasts, both frequentist and Bayesian statistical methods

are used. In particular, we evaluate point forecasts with the mean forecast error (MFE)

and root mean squared forecast error (RMSFE) statistics, while the quality of density

forecasts is assessed using log predictive scores (LPS) and probability integral transform

charts.

3.1 Point forecasts

We begin our forecasting contest by analyzing the mean forecast errors. The results

presented in Table 1 show that all models overpredict investment and underpredict con-

sumption, where the size of this bias is most pronounced for the DSSW model. This

indicates that adding financial frictions to a canonical New Keynesian setup helps in ac-

counting for the observed differences in the average growth rates of GDP components.

This result, however, does not translate into better forecasts for output: the MFEs from

the DSSW model are comparable, and for longer horizons even smaller in absolute value,

than those from either of the two extensions.

A significant bias can also be detected for labor market variables, as well as for medium

and long-term forecasts of inflation and the interest rate. In particular, the latter tend

to be too high for all three models, where the source of the bias is twofold: the models

overpredict both the future level of inflation and the real interest rate.

In comparison to other related studies (see Del Negro and Schorfheide, 2012, for a

review), the systematic bias of DSGE model-based forecasts found in our analysis can be

explained by the fact that we evaluate the predictions for levels of variables, some of which

are non-stationary, rather than for growth rates. The main reasons for the bias seem to
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be the following. First, the realization of stochastic trends was different in the estimation

and evaluation samples. For instance, the average quarterly growth rate of output stood

at 0.37% in the period 1970:1-1989:4 and was equal to 0.31% over the period 1990:1-

2010:4. The difference is even more visible for inflation: the respective quarterly averages

over the two subsamples amount to 1.36% and 0.55%, respectively. The second reason for

the biased forecasts is related to the common stochastic trend restriction imposed by the

theoretical model on per capita output, consumption, investment and real wages, which

is not consistent with the data over the evaluation sample. In particular, the shares of

consumption and investment in output exhibit positive and negative trends, respectively.

Third, too high interest rate forecasts are due to the “risk free interest rate puzzle” (see

Canzoneri et al., 2007, for a detailed discussion), i.e. the tendency of representative agent

models to overpredict the steady state interest rate. Our results show that adding financial

frictions somewhat alleviates, but does not resolve these problems.

A simple way to remove the bias would be to apply a smooth statistical (e.g. Hodrick-

Prescott) filter before running the estimation. This would mean, however, that the forecast

comparison would concern cyclical components that are not observed by forecasters in real

time. A more flexible alternative has been recently proposed by Canova (2012). In his

framework, the non-model based component is designed such that it can endogenously

capture those aspects of the data that the theoretical model has problems to explain.

Yet another option would be to relax some of the cross equation restrictions imposed by

the model structure (see e.g. Ireland, 2004; Cayen et al., 2009) or to use them only as a

prior for an atheoretical time series model (Del Negro and Schorfheide, 2004). Clearly, all

these approaches generate departures from the restrictions that are model dependent. As

a result, they can give a distorted picture on the usefulness for forecasting of particular

mechanisms included in the theoretical model, which is our paper’s focus. For this reason,

we do not use any of these methods in our forecasting contest.
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We continue our investigation by comparing the second moments of the forecast errors.

In Table 2 we report the RMSFEs for the DSSW model, whereas the remaining numbers

are expressed as ratios so that values below unity indicate that a given model outperforms

the DSSW benchmark. Moreover, to provide a rough gauge of whether the RMSFE ratios

are significantly different from unity, we report the results of the Diebold-Mariano test

(Diebold and Mariano, 1995).

Overall, the RMSFE statistic show that adding financial frictions in the corporate

sector helps in reducing RMSFEs for all variables at longer horizons, whereas the results

for shorter horizons are mixed. On the other hand, allowing for financial frictions in

the household sector tends to increase RMSFEs for all variables but consumption and

investment. At least two features of the DSSW+FF model-based forecasts warrant a

more detailed discussion. First, this extension produces most accurate medium and long-

term investment forecasts, but worst (even though not significantly so) predictions of

this variable up to one year ahead. Second, the DSSW+FF model clearly outperforms

both the benchmark and the DSSW+HF alternative in forecasting labor market variables.

To understand why this happens, it is useful to look at how the parameters describing

investment and labor market rigidities differ between the model variants. As can be seen

in Appendix C, the posterior estimates of both investment adjustment cost curvature

and wage stickiness are clearly lowest in the DSSW+FF setup. This suggests that the

additional frictions introduced by the financial accelerator framework of Bernanke et al.

(1999) to some extent substitute for these two standard rigidities in a way that improves

forecasts of labor market variables, as well as medium and long term investment forecasts.

On the other hand, since the Bernanke et al. frictions operate mainly on medium-term

frequencies, low costs of adjusting investment in the DSSW+FF variant make this variable

very volatile over short forecast horizons,1 which deteriorates short-run point (and, as we

1The autocorrelation of log change in investment in our evaluation sample is 0.71, while the correlation
of one step ahead forecasts from the DSSW+FF variant with the last available observation is just 0.32.
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will see later, even more density) forecasts.

Finally, we note that for all variables and horizons the RMSFE ratios obtained for the

equally weighted pool tend to be below unity and in many cases significantly so. Moreover,

in many instances the RMSFEs from the pool are lower than those produced by any of

the models. This is particularly true for the short term forecasts of the following three

key macroeconomic variables: output, prices and the interest rate.

Given that the recent revival of interest in DSGE models with financial frictions was to

a large degree a response to the Great Recession, we also look at the relative performance

of the investigated models during this episode, which according to the NBER’s business

cycle dating took place from 2007:4 to 2009:2. In Table 3 we show the RMSFEs for this

subsample. Given that each statistic is calculated on the basis of only seven observations,

we do not report the results of the Diebold-Mariano test. The comparison with Table 2

reveals that for output, consumption and investment the RMSFEs over the crisis period

are about twice higher than those calculated over the entire evaluation sample. For the

remaining variables, the RMSFEs are also larger during the crisis, but the difference is

not very pronounced. Overall, the relative performance of the alternative models during

the crisis can be considered very similar to that observed over the whole sample. The

only exceptions are the substantial improvement of forecasts from the DSSW+FF variant

for prices and wages and the deterioration of the DSSW+HF model-based forecasts for

consumption and hours.

The general conclusions that can be drawn from the comparison of point forecasts

are threefold. First, allowing for financial market imperfections somewhat attenuates

the problem of forecast bias, especially for GDP components. Second, adding financial

frictions in the corporate sector tends to improve the accuracy of point forecasts measured

by the RMSFEs, while the opposite is usually true for the version with frictions affecting

households. According to this statistics, the pool of models is an attractive option. Third,
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the relative accuracy of point forecasts from the investigated models during the recent

crisis and over the entire evaluation sample are broadly the same.

3.2 Density forecasts

We complement the discussion of point forecasts accuracy with an evaluation of density

forecasts. Our aim is to check to what extent the analyzed forecasts provide a realistic

description of actual uncertainty. More specifically, we evaluate the relative performance

of the models by comparing their predictive scores and discuss the absolute performance

by using the probability integral transforms.

Let us define the predictive density of an h-step ahead forecast formulated at time t

from model Mi as:

p(Yt+h|Ωt,Mi) =

∫
p(Yt+h|Ωt,Mi, θi)p(θi|Ωt,Mi)dθi (1)

where θi is the vector of model parameters. In the empirical application, for each in-

dividual model, we follow Adolfson et al. (2007) and assume that p(Yt+h|Ωt,Mi) is a

multivariate normal density, and estimate the mean vector and the covariance matrix

from the predictive sample.2 In the case of the pool, we follow Geweke and Amisano

(2011b) and calculate the predictive density as:

n∑
i=1

wip(Yt+h|Ωt,Mi) (2)

where wi are weights that satisfy wi ≥ 0 and
∑
wi = 1.

We compare the relative density forecasts from the competing models using the Kullback-

Leibler Information Criterion (KLIC), which measures the distance between the true den-

2The alternative option, proposed e.g. by Geweke and Amisano (2011a), is to use the fact that
p(Yt+h|Ωt,Mi, θi) is Gaussian and integrate out the parameters numerically to calculate p(Yt+h|Ωt,Mi).
The results obtained with this more computationally demanding method are broadly the same as in our
baseline case.
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sity p(Yt+h|Ωt) and the density forecast from model Mi as:

KLICi,t,h = E(ln p(Yt+h|Ωt) − ln p(Yt+h|Ωt,Mi)) (3)

The average of sample information is:

K̂LIC i,h =
1

Rh

T−h∑
t=P

(ln p(yt+h|Ωt) − ln p(yt+h|Ωt,Mi)), (4)

where yt denotes the realization of Yt, T and P stand for full sample and in-sample length,

and Rh = T −P −h+ 1 is the number of h-step ahead predictions. The value of K̂LIC i,h

is the difference between the average log (unobservable) true density of realizations and

the average log predictive score (LPS) of the h-step ahead forecasts from model Mi:

Si,h =
1

Rh

T−h∑
t=P

ln p(yt+h|Ωt,Mi) (5)

and thus:

K̂LIC i,h − K̂LIC i,h = Si,h − Sj,h. (6)

The null of equal accuracy of density forecasts from models Mi and Mj:

H0 : KLICi,t,h −KLICj,t,h = 0 (7)

can be tested using the KLIC type of tests that compare LPSs from both models (Mitchell

and Hall, 2005; Mitchell and Wallis, 2011), e.g. the Diebold-Mariano type of test proposed

by Amisano and Giacomini (2007).

In Table 4 we report the average values of the LPSs for the DSSW model, whereas

the remaining numbers are expressed as differences so that values above zero indicate

that a given model outperforms the DSSW benchmark. To provide a rough gauge of
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whether these differences are significantly different from zero, we report the results of the

Amisano-Giacomini test.

Our results show that adding financial frictions in the corporate sector improves sig-

nificantly the quality of longer term density forecasts for output, investment and wages.

However, at the same time, this extension decreases the performance of short term fore-

casts for investment, consumption and prices. If we compare the joint forecast density

for all seven variables under investigation, the conclusion is that the DSSW+FF model

is significantly worse than the benchmark for short horizons. As regards the DSSW+HF

variant, a significant improvement can be observed for consumption, while the forecast

quality deteriorates for prices and the interest rate. A comparison of the joint forecast

density for all seven variables shows that the DSSW model-based predictions are better

calibrated than those from the DSSW+HF variant for one quarter ahead, and worse for

the longest horizons. Finally, it is worth noting that, as in the RMSFE analysis, pooling

helps to improve the quality of density forecasts: in most cases the LPS differences are

positive. In particular, for the seven variables case and horizons above one year, they are

significantly greater than zero.

As in the case of RMSFEs, we also discuss the relative accuracy of density forecasts

during the recent financial crisis. The LPS statistics for this subsample are reported in

Table 5. Given that the estimates are based on only seven observations, we do not report

the results of the Amisano-Giacomini test. Similarly to point forecasts, the quality of

density forecasts substantially deteriorated during the recession. The difference between

the LPSs calculated for the crisis period and their full sample counterparts is particularly

large for output, consumption and investment. It is worth noting, however, that the

performance of financial friction models relative to the DSSW benchmark is better during

the crisis than over the entire evaluation period. In particular, and in contrast to the full

sample results, the DSSW+HF model turns out to be very efficient in forecasting output,
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investment and hours worked. Finally, pooling the forecasts works very well during the

crisis, which is especially visible if one compares the LPSs for all seven variables. Overall,

the results for the recent crisis episode confirm our claim that the three models are quite

complementary to each other.

The next examine where these differences in the LPSs across the models come from.

For a well calibrated density forecast, one would expect that it is unbiased (null MFE)

and effective (RMSFE equal to the average standard deviation of the predictive density,

SDPD). We have already looked at the first issue while analyzing the quality of point

forecasts. It can be noticed that there is a visible relationship between the MFEs and

LPSs: the higher the bias, the lower the LPSs. As regards the second issue, we address it

in Table 6, which reports the SDPDs for the DSSW model, while the remaining numbers

are expressed as ratios so that values above unity indicate that the density forecast from

a given model is more diffuse than that from the DSSW benchmark. The comparison of

numbers in Tables 2 and 6 indicates that for the DSSW model the SDPDs are usually

comparable to the RMSFEs, except for short-term forecasts of inflation and the interest

rate. This means that for this model the main problem is not the width of the predictive

densities, but the bias. The general conclusion for the DSSW+FF model is broadly similar.

The main difference relates to investment: adding financial frictions in the corporate sector

almost doubles the SDPD for short-term horizons, which leads to a significant fall in the

LPS (see Table 4). As discussed in the previous section, this result can be traced back to

low estimates of investment adjustment costs. Finally, the SDPDs from the DSSW+HF

model are visibly larger than those from the benchmark model, and hence the forecasts are

too diffuse. On the other hand, this feature becomes an advantage during the crisis, with

the model’s predictive density being more consistent with the output collapse observed

during this period.

In the last step, we evaluate the quality of density forecasts with the probability
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integral transform (PIT), which for an h-step ahead forecast from model Mi is defined as:

PITi,t,h =

∫ yt+h

−∞
p(Yt+h|Ωt,Mi)dYt+h (8)

If a density forecast is well calibrated, PITi,t,h should be independently and uniformly

distributed on the interval (0,1). Diebold et al. (1998) advocate a variety of graphical

approaches to forecast analysis using this statistics. In this paper, we use a visualization

that has been recently used for evaluation of DSGE models by Herbst and Schorfheide

(2012), i.e. we divide the unit interval into 10 subintervals and check if the fraction of

PITs in each of them is close to 10%.

Figure 1 shows the histograms of PITs for four quarter ahead forecasts. The inter-

pretation of these histograms is as follows. If PITs are equally distributed across bins,

a density forecast is well calibrated. If PITs are concentrated in the lower (upper) bins,

a model tends to overpredict (underpredict) a given variable. Finally, if PITs are con-

centrated in the middle (outer) bins, a density forecast is too diffuse (tight). Overall,

the figure confirms our earlier findings about an upward bias of forecasts generated from

the investigated models for all variables but consumption, whose density forecasts look

relatively well calibrated except for the DSSW+FF model.

Overall, the general conclusions that can be drawn from the comparison of density

forecasts are twofold. First, density forecasts from the three analyzed models are generally

poorly calibrated. The main source of this result can be traced back to a significant

bias, which was detected for most horizons and all analyzed variables. The width of the

predictive density does not seem to be a serious problem for the DSSW and DSSW+FF

models, but is too high in the case of the DSSW+HF variant. Second, the comparison of

the log predictive scores across the models, variables and forecast horizons indicates that

no model dominates the other. The DSSW+FF model is found to be relatively good in

forecasting output and wages, the DSSW+HF variant is quite successful in forecasting
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consumption and investment and also generates best density forecasts for real variables

during the recent crisis, whereas the baseline DSSW model performs best for hours and

inflation. Given these complementarities, there are clear gains from pooling forecasts from

all three models.

4 Conclusions

In this paper we have compared point and density forecasts from a richly-specified DSGE

model and from its two extensions that introduce financial frictions into the corporate

and household sectors. We have found that the main problem of the three models is a

significant and sizable bias of their forecasts. Another important finding is that adding

financial frictions in the corporate sector using the Bernanke et al. (1999) setup tends

to improve the accuracy of point forecasts, and, though to a lesser extent, the quality

of density forecasts. On the other hand, allowing for financial frictions in the household

sector á la Iacoviello (2005) tends to deteriorate the accuracy of point forecasts and makes

the density forecasts too diffuse. This setup, however, generated relatively good density

predictions of real variables during the recent financial crisis. Finally, we have also shown

that pooling forecasts from all three models is an attractive option, especially for density

forecasts.

We believe that the above findings contribute to the current discussion on the useful-

ness of DSGE models with financial frictions in forecasting and policy oriented analyses.

Our results indicate that while none of the two considered extensions offer a spectacular

improvement in the quality of DSGE model-based forecasts, especially in the absolute

sense, adding them to the suite of models does bring some benefits. In particular, as

suggested by a relatively good performance of pooled forecasts and additional insights

from the financial crisis episode, there seems to be sufficient complementarity between

the three setups that justifies their use in the forecasting process. However, our results
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also clearly point to the problem of bias in forecasts from DSGE models. This suggests

that modeling long-run trends within this framework deserves more attention than it has

so far received in the literature.
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Table 1: Mean Forecast Errors (MFE)
H = 1 H = 2 H = 4 H = 6 H = 8 H = 12 H = 16 H = 24

Output

DSSW -0.34∗∗∗ -0.67∗∗∗ -1.21∗∗∗ -1.53∗∗∗ -1.73∗∗ -1.67∗ -1.34 -0.37
DSSW+FF -0.36∗∗∗ -0.65∗∗∗ -1.04∗∗∗ -1.34∗∗∗ -1.60∗∗ -1.77∗∗ -1.73 -1.30
DSSW+HF -0.13 -0.35∗∗ -0.90∗∗ -1.47∗∗∗ -2.05∗∗∗ -2.60∗∗∗ -2.74∗∗ -2.62∗

Consumption

DSSW 0.03 0.14 0.56 1.18∗ 1.80∗∗ 3.06∗∗∗ 4.13∗∗∗ 6.06∗∗∗

DSSW+FF 0.09 0.22 0.57 0.99 1.42 2.50∗∗ 3.56∗∗∗ 5.55∗∗∗

DSSW+HF 0.02 0.08 0.29 0.60 0.96 1.95∗∗ 2.87∗∗∗ 4.40∗∗∗

Investment

DSSW -0.85∗∗∗ -2.18∗∗∗ -5.23∗∗∗ -8.03∗∗∗ -10.3∗∗∗ -11.5∗∗∗ -10.7∗∗∗ -6.93∗

DSSW+FF -0.89∗∗ -1.69∗ -2.87∗ -3.74∗ -4.35∗ -4.47 -4.15 -3.12
DSSW+HF -0.43∗∗∗ -1.32∗∗∗ -3.40∗∗∗ -5.24∗∗∗ -6.78∗∗∗ -6.93∗∗∗ -5.91∗ -4.11

Hours

DSSW -0.49∗∗∗ -0.95∗∗∗ -1.70∗∗∗ -2.15∗∗∗ -2.38∗∗∗ -2.35∗∗∗ -2.15∗∗ -1.94
DSSW+FF -0.55∗∗∗ -0.99∗∗∗ -1.59∗∗∗ -2.04∗∗∗ -2.36∗∗∗ -2.67∗∗∗ -2.85∗∗∗ -3.24∗∗∗

DSSW+HF -0.23∗∗∗ -0.56∗∗∗ -1.29∗∗∗ -2.00∗∗∗ -2.63∗∗∗ -3.20∗∗∗ -3.44∗∗∗ -3.97∗∗∗

Prices

DSSW -0.01 -0.07 -0.37∗∗∗ -0.87∗∗∗ -1.49∗∗∗ -2.89∗∗∗ -4.40∗∗∗ -7.70∗∗∗

DSSW+FF -0.07∗∗ -0.20∗∗∗ -0.53∗∗∗ -0.86∗∗∗ -1.23∗∗∗ -2.10∗∗∗ -3.00∗∗∗ -5.08∗∗∗

DSSW+HF 0.05∗∗ 0.10∗ 0.11 -0.13 -0.64∗ -2.15∗∗∗ -3.87∗∗∗ -7.27∗∗∗

Wages

DSSW -0.27∗∗∗ -0.65∗∗∗ -1.50∗∗∗ -2.17∗∗∗ -2.73∗∗∗ -3.44∗∗∗ -3.73∗∗∗ -3.31∗∗∗

DSSW+FF -0.22∗∗∗ -0.45∗∗∗ -0.86∗∗∗ -1.20∗∗∗ -1.56∗∗∗ -2.16∗∗∗ -2.53∗∗∗ -2.45∗∗∗

DSSW+HF -0.12∗∗ -0.34∗∗∗ -0.98∗∗∗ -1.70∗∗∗ -2.49∗∗∗ -3.75∗∗∗ -4.43∗∗∗ -4.42∗∗∗

Interest rate

DSSW -0.01 -0.13 -0.61∗ -1.22∗∗∗ -1.80∗∗∗ -2.52∗∗∗ -2.82∗∗∗ -3.19∗∗∗

DSSW+FF 0.04 -0.29∗ -0.98∗∗∗ -1.47∗∗∗ -1.83∗∗∗ -2.28∗∗∗ -2.49∗∗∗ -2.89∗∗∗

DSSW+HF -0.34∗∗∗ -0.58∗∗∗ -1.04∗∗∗ -1.60∗∗∗ -2.23∗∗∗ -3.17∗∗∗ -3.61∗∗∗ -3.97∗∗∗

Notes: A positive value indicates that forecasts are on average below the actual values. Asterisks
∗∗∗, ∗∗and ∗denote the rejection of the null that the MFE is equal to zero at the 1%, 5% and
10% significance levels, respectively. The test statistics are corrected for autocorrelation of
forecast errors with the Newey-West method. All reported statistics are for variables in log-
levels multiplied by 100, except for the interest rate that is expressed as annual percent.
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Table 2: Root Mean Squared Forecast Errors (RMSFE)
H = 1 H = 2 H = 4 H = 6 H = 8 H = 12 H = 16 H = 24

Output

DSSW 0.73 1.27 2.27 3.05 3.68 4.69 5.48 6.38
DSSW+FF 0.99 0.96 0.91∗∗ 0.89∗∗ 0.89∗∗∗ 0.90∗∗∗ 0.89∗∗∗ 0.89∗∗∗

DSSW+HF 0.98 0.98 1.00 1.05 1.07∗∗ 1.09∗∗ 1.05 1.01
Pool 0.95∗ 0.94∗∗ 0.94∗∗ 0.96∗∗ 0.97∗∗ 0.98 0.96 0.94

Consumption

DSSW 0.67 1.24 2.27 3.19 4.07 5.69 7.04 9.08
DSSW+FF 1.01 1.03 1.05 1.04 1.01 0.97 0.94∗∗ 0.90∗∗∗

DSSW+HF 1.01 1.00 0.95 0.90 0.85∗ 0.80∗∗∗ 0.78∗∗∗ 0.74∗∗∗

Pool 0.97∗∗ 0.97∗∗ 0.96∗∗ 0.94∗∗ 0.93∗∗ 0.91∗∗∗ 0.89∗∗∗ 0.88∗∗∗

Investment

DSSW 1.85 3.75 7.78 11.6 14.6 17.5 18.3 18.1
DSSW+FF 1.39 1.28 1.06 0.92 0.84∗∗ 0.77∗∗ 0.77∗∗ 0.84∗∗

DSSW+HF 0.95 0.89∗ 0.86∗∗ 0.87∗∗ 0.88∗∗∗ 0.87∗∗ 0.87∗∗ 0.89
Pool 1.03 0.98 0.92∗∗∗ 0.89∗∗∗ 0.87∗∗∗ 0.86∗∗∗ 0.86∗∗ 0.89∗∗

Hours

DSSW 0.81 1.31 2.16 2.85 3.41 4.35 4.84 4.98
DSSW+FF 0.91∗∗∗ 0.85∗∗∗ 0.78∗∗∗ 0.77∗∗∗ 0.77∗∗∗ 0.82∗∗∗ 0.86∗∗ 0.89∗∗

DSSW+HF 1.02 0.98 0.91∗ 0.92∗ 0.95 1.06∗ 1.13∗∗∗ 1.16∗∗∗

Pool 0.96∗∗∗ 0.92∗∗∗ 0.88∗∗∗ 0.88∗∗∗ 0.89∗∗∗ 0.95∗∗∗ 0.99 1.01

Prices

DSSW 0.21 0.38 0.78 1.33 1.99 3.51 5.26 9.27
DSSW+FF 1.15 1.26 1.26∗ 1.13 1.04 0.97 0.92∗ 0.89∗∗∗

DSSW+HF 1.06 1.11 1.13 1.07 1.03 1.05 1.07 1.03
Pool 0.97 0.95 0.89 0.86 0.86 0.87 0.87 0.85

Wages

DSSW 0.81 1.31 2.16 2.85 3.41 4.35 4.84 4.98
DSSW+FF 0.91∗∗∗ 0.85∗∗∗ 0.78∗∗∗ 0.77∗∗∗ 0.77∗∗∗ 0.82∗∗∗ 0.86∗∗ 0.89∗∗

DSSW+HF 1.02 0.98 0.91∗ 0.92∗ 0.95 1.06∗∗ 1.13∗∗∗ 1.16∗∗∗

Pool 0.96∗∗∗ 0.92∗∗∗ 0.88∗∗∗ 0.88∗∗∗ 0.89∗∗∗ 0.95∗∗∗ 0.99 1.01

Interest rate

DSSW 0.62 1.10 1.83 2.32 2.71 3.14 3.32 3.63
DSSW+FF 1.00 0.90 0.95 0.95 0.93 0.87∗∗ 0.87∗∗∗ 0.96∗∗

DSSW+HF 1.19∗ 1.10 1.00 0.99 1.04 1.20∗∗ 1.32∗∗∗ 1.35∗∗∗

Pool 0.99 0.96 0.95 0.94∗∗ 0.95∗ 0.99 1.04 1.07∗∗

Notes: For the DSSW model the RMSFEs are reported in levels, whereas for the remaining
models they appear as the ratios so that the values below unity indicate that a given model
has a lower RMSE than the benchmark. To provide a rough guidance of whether the ratios are
different from unity, we use the Diebold-Mariano test, where the long-run variance is calculated
with the Newey-West method. Asterisks ∗∗∗, ∗∗and ∗denote the 1%, 5% and 10% significance
levels, respectively. All reported statistics are for variables in log-levels multiplied by 100, except
for the interest rate that is expressed as annual percent.
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Table 3: Root Mean Squared Forecast Errors for 2007:4-2009:2 period
H = 1 H = 2 H = 4 H = 6 H = 8 H = 12 H = 16 H = 24

Output

DSSW 1.34 3.01 5.33 6.30 6.62 8.72 9.43 7.63
DSSW+FF 1.09 1.02 0.93 0.92 0.93 0.90 0.89 0.95
DSSW+HH 0.91 0.90 0.97 1.03 1.07 1.07 1.05 1.02
Pool 0.98 0.97 0.96 0.98 1.00 0.99 0.98 0.99

Consumption

DSSW 1.43 2.88 4.36 4.42 4.04 5.10 5.12 2.82
DSSW+FF 0.97 0.98 1.02 1.07 1.17 1.14 0.98 0.83
DSSW+HH 1.07 1.07 1.08 1.10 1.11 1.03 0.97 0.89
Pool 1.01 1.02 1.03 1.05 1.09 1.05 0.98 0.89

Investment

DSSW 3.60 8.84 16.72 21.42 24.47 29.55 29.90 24.92
DSSW+FF 1.66 1.24 0.89 0.80 0.75 0.68 0.69 0.78
DSSW+HH 0.75 0.80 0.86 0.86 0.89 0.86 0.80 0.72
Pool 1.09 1.00 0.91 0.88 0.87 0.84 0.83 0.83

Hours

DSSW 1.13 1.19 2.43 3.05 3.74 6.19 7.27 6.16
DSSW+FF 0.87 0.79 0.71 0.69 0.69 0.70 0.75 0.83
DSSW+HH 1.15 1.09 1.09 1.11 1.12 1.12 1.13 1.24
Pool 1.00 0.94 0.92 0.93 0.93 0.94 0.96 1.02

Prices

DSSW 0.32 0.42 0.82 0.99 1.44 1.64 1.99 3.08
DSSW+FF 0.87 0.67 0.38 0.59 0.47 0.38 0.46 0.63
DSSW+HH 0.98 0.95 0.77 0.68 0.86 1.30 1.32 1.32
Pool 0.89 0.72 0.59 0.59 0.67 0.80 0.86 0.79

Wages

DSSW 1.13 1.19 2.43 3.05 3.74 6.19 7.27 6.16
DSSW+FF 0.87 0.79 0.71 0.69 0.69 0.70 0.75 0.83
DSSW+HH 1.15 1.09 1.09 1.11 1.12 1.12 1.13 1.24
Pool 1.00 0.94 0.92 0.93 0.93 0.94 0.96 1.02

Interest rate

DSSW 0.99 1.65 2.75 3.33 3.67 4.01 4.35 4.57
DSSW+FF 1.07 0.82 0.92 0.93 0.85 0.82 0.91 0.95
DSSW+HH 1.21 1.10 0.98 1.02 1.10 1.27 1.28 1.32
Pool 0.95 0.95 0.97 0.98 0.98 1.03 1.06 1.09

Notes: For the DSSW model the RMSFEs are reported in levels, whereas for the remaining
models they appear as the ratios so that the values below unity indicate that a given model
has a lower RMSE than the benchmark. All reported statistics are for variables in log-levels
multiplied by 100, except for the interest rate that is expressed as annual percent.
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Table 4: Average log predictive scores (LPS)
H = 1 H = 2 H = 4 H = 6 H = 8 H = 12 H = 16 H = 24

Output

DSSW -1.15 -1.73 -2.32 -2.62 -2.79 -3.02 -3.16 -3.29
DSSW+FF -0.06∗ 0.00 0.08 0.09∗∗ 0.08∗∗ 0.06∗ 0.07∗∗ 0.09∗∗

DSSW+HF -0.05 -0.02 -0.03 -0.08 -0.11 -0.16 -0.18 -0.24∗∗

Pool -0.02 0.02 0.07 0.06 0.03 0.01 0.01 -0.02

Consumption

DSSW -1.05 -1.70 -2.33 -2.68 -2.96 -3.41 -3.73 -4.07
DSSW+FF 0.01 0.00 -0.16 -0.26∗∗∗ -0.28∗∗ -0.17 0.01 0.29∗∗∗

DSSW+HF -0.01 0.01 0.07 0.15∗ 0.26∗∗∗ 0.47∗∗∗ 0.61∗∗∗ 0.75∗∗∗

Pool 0.02 0.04∗ 0.03∗ 0.05∗ 0.10∗∗∗ 0.23∗∗∗ 0.35∗∗∗ 0.50∗∗∗

Investment

DSSW -2.06 -2.77 -3.51 -3.96 -4.23 -4.42 -4.43 -4.35
DSSW+FF -0.49∗∗∗ -0.34∗∗∗ -0.12 0.02 0.13 0.21∗∗ 0.19∗∗∗ 0.04
DSSW+HF 0.04 0.08 0.12 0.17 0.21 0.21 0.15 -0.02
Pool -0.10 -0.03 0.06 0.14 0.21 0.26∗ 0.26 0.14

Hours

DSSW -1.23 -1.74 -2.37 -2.68 -2.84 -2.94 -2.99 -3.07
DSSW+FF -0.03 -0.06 -0.07 -0.13 -0.20 -0.25 -0.24 -0.24
DSSW+HF -0.05 -0.02 0.01 -0.02 -0.09 -0.24 -0.33∗∗ -0.45∗∗∗

Pool -0.01 0.02 0.11 0.13 0.10 0.02 -0.04 -0.11∗∗∗

Prices

DSSW -0.04 -0.70 -1.41 -1.85 -2.18 -2.68 -3.06 -3.71
DSSW+FF -0.14∗∗∗ -0.12∗∗ -0.07 -0.02 0.00 0.02 0.05 0.15∗

DSSW+HF -0.13∗∗∗ -0.19∗∗∗ -0.27∗∗∗ -0.31∗∗∗ -0.32∗∗∗ -0.33∗∗∗ -0.32∗∗∗ -0.18
Pool -0.07∗∗∗ -0.09∗∗∗ -0.09∗∗∗ -0.09∗∗∗ -0.08∗∗ -0.08∗∗ -0.05 0.04

Wages

DSSW -1.23 -1.69 -2.21 -2.49 -2.68 -2.94 -3.03 -3.03
DSSW+FF 0.11∗∗ 0.12∗∗∗ 0.21∗∗∗ 0.25∗∗∗ 0.26∗∗∗ 0.23∗∗∗ 0.17∗∗ 0.07
DSSW+HF 0.00 0.03 0.07 0.07 0.06 0.00 -0.07∗∗ -0.13∗∗∗

Pool 0.08∗∗∗ 0.07∗∗∗ 0.11∗∗∗ 0.13∗∗∗ 0.13∗∗∗ 0.10∗∗ 0.05 -0.01

Interest rate

DSSW -1.29 -1.67 -2.07 -2.29 -2.44 -2.60 -2.66 -2.76
DSSW+FF -0.05∗∗ -0.05 -0.04 0.00 0.06 0.14 0.15∗ 0.09
DSSW+HF -0.05 -0.04 -0.03 -0.05 -0.10 -0.23∗∗∗ -0.34∗∗∗ -0.37∗∗∗

Pool -0.03∗∗ -0.02 -0.01 0.00 0.01 0.00 -0.03 -0.06∗

7 variables

DSSW -7.50 -11.0 -14.8 -17.1 -18.8 -21.1 -22.7 -25.0
DSSW+FF -0.67∗∗∗ -0.50∗∗ -0.28 -0.24 -0.17 -0.11 -0.13 -0.29
DSSW+HF -0.37∗∗∗ -0.39∗∗∗ -0.31 -0.12 0.17 0.80 1.42∗∗ 2.47∗∗∗

Pool -0.18∗∗∗ -0.08 0.19 0.37∗∗ 0.59∗∗∗ 0.96∗∗∗ 1.30∗∗∗ 2.01∗∗∗

Notes: For the DSSW model LPSs are reported in levels, whereas for the remaining models
they appear as the differences so that the values above zero indicate that a given model has a
higher LPS than the benchmark. To provide a rough guidance of whether the differences are
different from zero, we use the Amisano and Giacomini (2007) test, where the long-run variance
is calculated with the Newey-West method. Asterisks ∗∗∗, ∗∗and ∗denote the 1%, 5% and 10%
significance levels, respectively. All reported statistics are for variables in log-levels multiplied
by 100, except for the interest rate that is expressed as annual percent.

25



Table 5: Average log predictive scores for 2007:4-2009:2 period
H = 1 H = 2 H = 4 H = 6 H = 8 H = 12 H = 16 H = 24

Output

DSSW -2.12 -4.07 -5.17 -4.64 -4.13 -4.47 -4.26 -3.49
DSSW+FF 0.13 0.57 0.68 0.26 0.04 0.12 0.14 0.04
DSSW+HF 0.41 1.14 1.39 0.92 0.57 0.66 0.51 -0.04
Pool 0.27 0.84 1.05 0.65 0.33 0.39 0.32 0.01

Consumption

DSSW -3.00 -4.93 -4.97 -3.75 -3.06 -3.25 -3.11 -2.75
DSSW+FF 0.28 0.43 -0.33 -0.70 -0.80 -0.70 -0.07 0.13
DSSW+HF -0.11 -0.15 -0.03 0.01 -0.02 0.14 0.08 -0.23
Pool 0.10 0.22 -0.03 -0.10 -0.16 -0.03 0.05 -0.02

Investment

DSSW -3.28 -5.01 -5.84 -5.82 -5.80 -6.05 -5.74 -4.92
DSSW+FF -0.26 0.25 0.74 0.69 0.74 0.96 0.71 0.30
DSSW+HF 0.84 1.30 1.29 1.17 1.07 1.28 1.14 0.54
Pool 0.46 0.89 0.94 0.91 0.83 1.04 0.89 0.41

Hours

DSSW -1.45 -2.81 -4.12 -3.87 -3.66 -3.57 -3.42 -3.24
DSSW+FF -0.47 -0.85 -0.51 -0.50 -0.62 -0.39 -0.35 -0.38
DSSW+HF 0.16 0.67 1.09 0.75 0.46 0.24 0.07 -0.17
Pool 0.00 0.33 0.76 0.49 0.29 0.17 0.07 -0.11

Prices

DSSW -0.28 -0.71 -1.40 -1.72 -2.02 -2.33 -2.57 -2.97
DSSW+FF 0.04 0.07 0.24 0.15 0.16 0.04 -0.05 -0.17
DSSW+HF 0.02 -0.07 -0.11 -0.22 -0.27 -0.39 -0.45 -0.51
Pool 0.07 0.01 0.06 -0.01 -0.02 -0.10 -0.15 -0.20

Wages

DSSW -1.76 -1.62 -2.32 -2.54 -2.75 -3.53 -3.81 -3.29
DSSW+FF 0.35 0.09 0.30 0.33 0.35 0.62 0.66 0.23
DSSW+HF -0.23 -0.10 -0.08 -0.10 -0.10 0.05 0.04 -0.25
Pool 0.17 0.01 0.10 0.10 0.11 0.27 0.28 0.01

Interest rate

DSSW -1.43 -1.92 -2.52 -2.77 -2.90 -3.02 -3.17 -3.24
DSSW+FF -0.05 0.12 0.16 0.22 0.35 0.41 0.35 0.32
DSSW+HF -0.17 -0.12 0.01 0.01 -0.05 -0.25 -0.19 -0.19
Pool -0.03 0.03 0.07 0.09 0.13 0.11 0.09 0.07

7 variables

DSSW -12.5 -18.4 -22.0 -20.6 -20.2 -20.9 -21.1 -21.0
DSSW+FF -0.75 0.05 1.60 1.06 1.07 1.36 1.60 0.55
DSSW+HF 0.10 0.27 -0.33 -0.89 -0.92 -0.84 -0.35 -0.17
Pool 0.38 1.13 1.42 0.65 0.63 0.83 1.02 0.43

Notes: For the DSSW model LPSs are reported in levels, whereas for the remaining models they
appear as the differences so that the values above zero indicate that a given model has a higher
LPS than the benchmark. All reported statistics are for variables in log-levels multiplied by 100,
except for the interest rate that is expressed as annual percent.
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Table 6: Average standard deviation of predictive density (SDPD)
H = 1 H = 2 H = 4 H = 6 H = 8 H = 12 H = 16 H = 24

Output

DSSW 0.88 1.39 2.26 2.98 3.59 4.52 5.24 6.34
DSSW+FF 1.20 1.18 1.07 1.00 0.97 0.95 0.95 0.98
DSSW+HF 1.19 1.24 1.34 1.42 1.48 1.59 1.66 1.75

Consumption

DSSW 0.70 1.17 1.90 2.47 2.93 3.66 4.26 5.34
DSSW+FF 0.98 0.93 0.87 0.85 0.84 0.87 0.90 0.95
DSSW+HF 1.04 1.02 1.06 1.12 1.19 1.30 1.36 1.43

Investment

DSSW 2.08 4.00 7.43 10.0 11.8 13.9 14.9 16.1
DSSW+FF 1.98 1.60 1.21 1.05 0.96 0.89 0.87 0.87
DSSW+HF 1.07 1.11 1.17 1.24 1.30 1.42 1.49 1.59

Hours

DSSW 1.08 1.59 2.31 2.86 3.29 3.89 4.28 4.75
DSSW+FF 0.97 0.97 0.93 0.88 0.86 0.84 0.83 0.84
DSSW+HF 1.17 1.25 1.42 1.57 1.70 1.91 2.08 2.34

Prices

DSSW 0.34 0.69 1.40 2.06 2.69 3.90 5.09 7.47
DSSW+FF 1.16 1.07 0.98 0.97 0.99 1.04 1.09 1.19
DSSW+HF 1.19 1.27 1.41 1.52 1.62 1.78 1.90 2.04

Wages

DSSW 0.67 1.23 2.10 2.70 3.13 3.76 4.26 5.13
DSSW+FF 1.25 1.15 1.04 1.01 1.01 1.04 1.07 1.11
DSSW+HF 1.08 1.13 1.20 1.24 1.26 1.25 1.21 1.16

Interest rate

DSSW 1.29 1.74 2.26 2.54 2.69 2.83 2.89 2.98
DSSW+FF 1.07 1.13 1.17 1.18 1.18 1.19 1.21 1.24
DSSW+HF 0.99 0.97 1.03 1.13 1.23 1.38 1.48 1.57

Notes: For the DSSW model the SDPDs are reported in levels, whereas for the remaining
models they appear as the ratios so that the values above unity indicate that a given model has
a more diffuse predictive density than the benchmark. All reported statistics are for variables
in log-levels multiplied by 100, except for the interest rate that is expressed as annual percent.
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Figure 1: Density forecasts: PIT histograms for four-quarter horizon
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Notes: Bars represent the fraction of realized observations falling into the particular deciles of
density forecasts. The theoretical value of 10% for a well calibrated model is represented by a
solid line. All histograms are for variables in log-levels multiplied by 100, except for the interest
rate that is expressed as annual percent.
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Appendix

A Model equations

This section lays out the full systems of equations that make up each of the models used

in our forecasting competition.

A.1 DSSW model

Marginal utility

Λt =
bt

Ct − hCt−1

− βhEt

{
bt+1

Ct+1 − hCt

}
(A.1)

Euler equation for households

βEt

{
Λt+1

Λt

Rt

πt+1

}
= 1 (A.2)

Wage of reoptimizing households

Et

{
∞∑
s=0

ζswβ
s

[
W̃t

Pt+s

(
Pt+s−1Zt+s−1

Pt−1Zt−1

)ιw
(π∗eγ)s(1−ιw) − (1 + λw)

ϕt+sL̃
νl
t+s

Λt+s

]
Λt+sL̃t+s

}
= 0

(A.3)

Labor of reoptimizing households

L̃t+s =

[
W̃t

Wt+s

(
Pt+s−1Zt+s−1

Pt−1Zt−1

)ιw
(π∗eγ)s(1−ιw)

]− 1+λw
λw

Lt+s (A.4)

Aggregate wage

Wt =

[
ζw
(
Wt−1(πt−1e

zt−1)ιw(π∗eγ)1−ιw
)− 1

λw + (1 − ζw)W̃
− 1

λw
t

]−λw
(A.5)

Capital stock

K̄t = (1 − δ)K̄t−1 + µt

(
1 − S

(
It
It−1

))
It (A.6)

Capital services

Kt = utK̄t−1 (A.7)
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Investment demand

1 = µt

(
1 − S

(
It
It−1

)
− ItS

′
(

It
It−1

))
Qt + βEt

{
Λt+1

Λt

µt+1

I2t+1

It
S ′
(
It+1

It

)
Qt+1

}
(A.8)

Rate of return on capital

Re
t =

utR
k
t − a(ut)Pt + (1 − δ)QtPt

Qt−1Pt−1

(A.9)

Optimal capital holdings

1 = βEt

{
Λt+1

Λt

Re
t+1

πt+1

}
(A.10)

Optimal capacity utilization

a′(ut) =
Rk
t

Pt
(A.11)

Marginal cost

MCt = Zα−1
t

(
Wt

1 − α

)1−α(
Rk
t

α

)α
(A.12)

Price set by reoptimizing firms

Et

{
∞∑
s=0

ζspβ
sΛt+s

Pt+s

[
P̃t

(
Pt+s−1

Pt−1

)ιp
π∗s(1−ιp) − (1 + λf,t+s)MCt+s

]
Ỹt+s

}
= 0 (A.13)

Output of reoptimizing firms

Ỹt+s =

[
P̃t
Pt+s

(
Pt+s−1

Pt−1

)ιp
π∗s(1−ιp)

]− 1+λf,t+s
λf,t+s

Yt+s (A.14)

Aggregate price level

Pt =

[
ζp
(
Pt−1(πt−1)

ιp(π∗)1−ιp
)− 1

λf,t + (1 − ζp)P̃
− 1

λf,t

t

]−λf,t
(A.15)

Taylor rule

Rt

R∗ =

(
Rt−1

R∗

)ρR [( πt
π∗

)ψ1
(
Yt
Y ∗
t

)ψ2
]1−ρR

eϵR,t (A.16)

Aggregate resource constraint
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1

gt
Yt = Ct + It + a(ut)Kt−1 (A.17)

Labor market clearing

Lt =

(
1 − α

α

)α(
Rk
t

Wt

)α
Yt

Z1−α
t

∆t (A.18)

Capital market clearing

Kt =

(
α

1 − α

)1−α(
Wt

Rk
t

)1−α
Yt

Z1−α
t

∆t (A.19)

Price dispersion

∆t = (1 − ζp)

(
P̃t
Pt

)−
1+λf,t
λf,t

+ ζp

(
(πt−1)

ιp(π∗)1−ιp

πt

)−
1+λf,t
λf,t

∆t−1 (A.20)

In the equations above, the notation is as in Del Negro et al. (2007). In particular,

Yt is output, Ct is consumption, It is investment, Lt is labor, K̄t is capital, Kt is capital

services, ut is the capital utilization rate, MCt is marginal cost, Wt is wage, Rk
t is the

rental rate on capital, Re
t is the rate of return on capital, Λt is marginal utility, Pt is the

aggregate price level, πt is inflation, Qt is the real price of capital, Rt is the policy rate, ∆t

is price dispersion, Zt is technology. Tildas indicate choices made by reoptimizing agents

in the Calvo scheme, while stars denote the steady-state values. a(•) and S(•) are twice

differentiable functions. The parameters of the model are described in section C.1.

The model is driven by seven stochastic disturbances: the growth rate of technology

zt ≡ log(Zt/Zt−1), time preference bt, the relative price of investment µt, disutility of la-

bor ϕt, price markup λf,t, government purchases gt, and the monetary policy ϵR,t. Except

for the monetary policy shock, that is assumed to be white noise, all shocks follow inde-

pendent first-order autoregressive processes. The following model variables are treated as

observable in estimation: the growth rate of output ∆ log Yt, the growth rate of consump-

tion ∆ logCt, the growth rate of investment ∆ log It, employment logLt, the growth rate

of real wages ∆ log(Wt/Pt), inflation ∆ logPt, and the short-term interest rate Rt.

A.2 DSSW+FF model

Entrepreneurial debt
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Dt = QtPtK̄t −Nt (A.21)

Zero profit condition for the banking sector

Re
tQt−1Pt−1K̄t−1 [ω̃t(1 − F1,t) + (1 − χ)F2,t] = Rt−1Dt−1 (A.22)

Optimal contract

Et

{ Re
t+1

Rt
[1 − ω̃t+1(1 − F1,t+1) − F2,t+1] +

+ 1−F1,t+1

1−F1,t+1−χω̃t+1F ′
1,t+1

(
Re

t+1

Rt
[ω̃t+1(1 − F1,t+1) + (1 − χ)F2,t+1] − 1

) } = 0 (A.23)

Auxiliary functions

F1,t =

∫ ω̃t

0

dF (ω) (A.24)

F2,t =

∫ ω̃t

0

ωdF (ω) (A.25)

The rate of interest paid to the bank by non-defaulting entrepreneurs

Rd
t =

ω̃tR
e
tQt−1Pt−1K̄t−1

Dt−1

(A.26)

The law of motion for net worth in the economy

Nt = νt
(
Re
tQt−1Pt−1K̄t−1 −Rt−1Dt−1 − χRe

tQt−1Pt−1K̄t−1F2,t

)
+W e

t (A.27)

The aggregate resource constraint

1

gt
Yt = Ct + It + a(ut)K̄t−1 + µF2,tR

e
tQt−1K̄t−1π

−1
t (A.28)

Equations (A.23) and (A.28) in the DSSW+FF model replace equations (A.10) and

(A.17) of the benchmark model. All remaining equations are the same as in the DSSW

variant. The new variables are: entrepreneurial debt Dt and net worth Nt, the cutoff

value of idiosyncratic shock determining entrepreneurs’ solvency ω̃t, the contractual (non-

default) interest rate on loans to entrepreneurs Rd
t , and two auxiliary functions F1,t and

F2,t. The cumulative density function of idiosyncratic risk ω is denoted by F (ω). All new

parameters are described in section C.1.

The DSSW+FF model includes two additional stochastic shocks, which affect the
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survival rate of entrepreneurs νt and the volatility of idiosyncratic risk σt. Both are

assumed to follow a first-order autoregressive process. The two additional variables used

in estimation are the growth rate of nominal loans to firms ∆ logDt and the spread on

loans to firms Rd
t −Rt.

A.3 DSSW+HF model

Housing demand by patient households

at
Op
t

+ βp(1 − δo)Et
{

Λp
t+1Q

o
t+1

}
= Qo

tΛ
p
t (A.29)

Impatient households’ budget constraint

PtC
i
t +Ri

t−1D
i
t−1 + T it + PtQ

o
t (O

i
t − (1 − δo)O

i
t−1) = W i

tL
i
t +Di

t (A.30)

Euler equation for impatient households’

βiEt

{
Λi
t+1

πt+1

Ri
t

}
+ ΘtR

i
t = Λi

t (A.31)

Housing demand by impatient households

at
Oi
t

+ β(1 − δo)E
i
t

{
Qo
t+1Λ

i
t+1

}
+ Θtmt(1 − δo)Et

{
πt+1Q

o
t+1

}
= Qo

tΛ
i
t (A.32)

Collateral constraint

Ri
tD

i
t = mt(1 − δo)Et

{
Pt+1Q

o
t+1O

i
t

}
(A.33)

Housing accumulation

Ot = (1 − δo)Ot−1 + µot

(
1 − So

(
Iot
Iot−1

))
Iot (A.34)

Residential investment demand

1 = µot

(
1 − So

(
Iot
Iot−1

)
− Iot S

′
o

(
Iot
Iot−1

))
Qo
t + βEt

{
Λp
t+1

Λp
t

µot+1

Io2t+1

Iot
S ′
o

(
Iot+1

Iot

)
Qo
t+1

}
(A.35)

Lending rate

Ri
t = (1 + λd,t)Rt (A.36)
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Demand for patient households’ labor

Lpt = np

(
W p
t

Wt

)− 1+λl
λl

Lt (A.37)

Demand for impatient households’ labor

Lit = (1 − np)

(
W i
t

Wt

)− 1+λl
λl

Lt (A.38)

Total labor supply

Lt =

[
n

λl
1+λl
p (Lpt )

1
1+λl + (1 − np)

λl
1+λl

(
Lit
) 1

1+λl

]1+λl
(A.39)

Housing market clearing

Ot = npO
p
t + (1 − np)O

i
t (A.40)

Aggregate resource constraint

1

gt
Yt = npC

p
t + (1 − np)C

i
t + It + Iot + a(ut)K̄t−1 (A.41)

In comparison to the DSSW model, (A.28) replaces (A.17) and all other equations

defining the equilibrium are the same, except that a superscript p should be added to

Ct, Λt, Wt, W̃t, L̃t and β. The following equations have their “clones” for impatient

households: (A.3), (A.4) and (A.5). The new variables showing up in the DSSW+HF

model are: housing stock Ot, real house prices Qo
t , residential investment Iot , loans to

impatient households Di
t, the interest rate on loans to impatient households Ri

t and the

Lagrange multiplier on the collateral constraint Θt. Subscripts p and i denote patient and

impatient households, respectively. The new parameters are described in section C.1.

There are four new stochastic disturbances, all assumed to follow a first-order au-

toregressive process. They are the shocks to housing preferences at, the relative price of

residential investment µot , the loan-to-value ratio mt, and the lending-deposit rate spread

λd,t. Compared to the DSSW model, the vector of observable variables also includes the

growth rate of residential investment ∆ log Iot , the growth rate of mortgage loans ∆ logDi
t,

the growth rate of nominal house prices ∆ logQo
t +log πt and the spread on mortgage loans

Ri
t −Rt.
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B Data

We use the following US time series to estimate our models.

Ouptut: Real gross domestic product, chained index. Source: Bureau of Economic Anal-

ysis.

Consumption: Nominal personal consumption expenditures, deflated by the implicit

GDP deflator. Source: Bureau of Economic Analysis.

Investment: Nominal gross private fixed domestic investment (only nonresidential for

DSSW+HF), deflated by the implicit GDP deflator. Source: Bureau of Economic Anal-

ysis.

Residential investment: Nominal gross private fixed domestic residential investment,

deflated by the implicit GDP deflator. Source: Bureau of Economic Analysis.

Labor: Average weekly hours in the non-farm business sector, multiplied with the civilian

employment (16 years and over), and divided by the population level (16 years and over).

Source: Bureau of Labor Statistics.

Wages: Nominal compensation of employees in the non-farm business sector, deflated by

the implicit GDP deflator. Source: Bureau of Labor Statistics and Bureau of Economic

Analysis.

House prices: Price index of new single-family houses sold, including value of lot. Source:

Census Bureau.

Inflation: Implicit GDP deflator. Source: Bureau of Economic Analysis.

Interest rate: Federal funds rate. Source: Federal Reserve Board.

Loans to firms: Credit market instruments liabilities of the non-farm non-financial busi-

ness sector. Source: Federal Reserve Board.

Spread on loans to firms: Difference between the industrial BBB corporate bond yield,

backcasted using BAA corporate bond yields, and the federal funds rate. Source: Bloomberg

and Federal Reserve Board.

Mortgage loans: Home mortgages liabilities of the private domestic nonfinancial sec-

tors, excluding state and local governments. Source: Federal Reserve Board.

Spread on mortgage loans: Difference between the effective interest rate on conven-

tional single-family mortgages and the federal funds rate. Source: Federal Housing Fi-

nance Agency and Federal Reserve Board.
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While estimating the models, we express the following variables in log-differences: output,

consumption, investment, wages, house prices and loans. Note that, in the US data, debt

to output ratios and real house prices exhibit secular trends. Since these processes are

not explained in our models, we include an intercept in the measurement equations that

link the data on loans and house prices to their model counterparts. These intercepts,

denoted, respectively, as Dadj and Qo,adj, are estimated with relatively loose priors (see

section C.1).

C Estimation

C.1 Prior assumptions

Our calibration and prior assumptions, together with a short description of each param-

eter, are reported in Tables C.1, C.2 and C.3. For the DSSW model, they are identical

as in Del Negro et al. (2007). As regards the DSSW+FF and DSSW+HF extensions,

we center the priors on the additional parameters such that the models match some key

steady state proportions of the US data. These include the residential and non-residential

investment shares in GDP, debt-to-GDP ratios and interest rate spreads.

Table C.1: Calibrated parameters
Parameter Value Description

ϕ 0.8 Steady-state weight on leisure in utility
λw 0.3 Steady-state wage markup
δ 0.025 Capital depreciation rate
δo 0.005 Housing depreciation rate
λl 0.3 Elasticity of substitution between labor of patient and impatient HHs
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Table C.2: Prior assumptions - structural parameters
Parameter Type Mean Std. Description

α beta 0.33 0.05 Capital share
ζp beta 0.6 0.2 Calvo probability for prices
ιp beta 0.5 0.2 Price indexation
S” gamma 4 1.5 Investment adjustment cost curvature
h beta 0.7 0.05 Habits in consumption
a” gamma 0.2 0.1 Capacity utilization cost curvature
νl gamma 2 0.75 Inv. Frisch elasticity of labor supply
ζw beta 0.6 0.2 Calvo probability for wages
ιw beta 0.5 0.2 Wage indexation
r∗ gamma 2 1 Steady state real interest rate (annualized)
ψ1 gamma 1.5 0.4 Weight on inflation in Taylor rule
ψ2 gamma 0.2 0.1 Weight on output in Taylor rule
ρR beta 0.5 0.2 Interest rate smoothing
π∗ normal 3.01 1.5 Steady state inflation (annualized)
γ gamma 2 1 Steady-state growth rate of technology (annualized)
λf gamma 0.15 0.1 Steady-state price markup
g∗ gamma 0.3 0.1 Steady-state government spending share
Ladj normal 662 10 Steady-state hours worked
ν beta 0.975 0.001 Steady-state survival rate of entrepreneurs
χ beta 0.12 0.01 Auditing costs
σ gamma 0.3 0.01 Steady-state standard deviation of idiosyncratic risk

Dadj normal 0.5 0.1 Excess trend of real debt
a gamma 0.2 0.01 Steady-state weight of housing in utility
βi beta 0.97 0.01 Impatient HHs’ discount factor
m normal 0.85 0.01 Steady-state loan-to-value ratio
So” gamma 4 1.5 Residential investment adjustment cost curvature
λd gamma 0.006 0.001 Steady-state spread on loans to impatient HHs
np beta 0.2 0.01 Share of patient HHs

Qo,adj normal 0.2 0.1 Trend in real house prices
Notes: For the DSSW+HF model, the prior mean of α is 0.27.
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Table C.3: Prior assumptions - shocks
Parameter Type Mean Std. Description

ρz beta 0.2 0.1 Persistence of productivity shock
ρϕ beta 0.6 0.2 Persistence of labor supply shock
ρλf beta 0.6 0.2 Persistence of price markup shock

ρµ beta 0.8 0.05 Persistence of investment shock
ρb beta 0.6 0.2 Persistence of intertemporal utility shock
ρg beta 0.8 0.05 Persistence of government spending shock
ρν beta 0.8 0.2 Persistence of entrepreneurs’ survival shock
ρσ beta 0.8 0.2 Persistence of idiosyncratic risk volatility shock
ρa beta 0.6 0.2 Persistence of housing demand shock
ρm beta 0.6 0.2 Persistence of loan-to-value shock
ρµo beta 0.8 0.05 Persistence of residential investment shock
ρλd beta 0.6 0.2 Persistence of spread shock
σz inv. gamma 0.5 inf Volatility of productivity shock
σϕ inv. gamma 2 inf Volatility of labor supply shock
σλf inv. gamma 0.5 inf Volatility of price markup shock

σµ inv. gamma 0.5 inf Volatility of investment shock
σb inv. gamma 0.5 inf Volatility of intertemporal utility shock
σg inv. gamma 0.5 inf Volatility of government spending shock
σR inv. gamma 0.25 inf Volatility of interest rate shock
σν inv. gamma 0.5 inf Volatility of entrepreneurs’ survival shock
σσ inv. gamma 0.5 inf Volatility of idiosyncratic risk volatility shock
σa inv. gamma 0.5 inf Volatility of housing demand shock
σm inv. gamma 0.5 inf Volatility of loan-to-value shock
σµo inv. gamma 0.5 inf Volatility of residential investment shock
σλd inv. gamma 0.5 inf Volatility of spread shock

C.2 Posterior estimates

All estimations are done with Dynare, version 4.2.4. The posterior distributions are

obtained with the Metropolis-Hastings algorithm. For each subsample, we create 125,000

draws, of which the first 25,000 draws are discarded. The characteristics of the marginal

posterior distributions, obtained from the full sample estimation, are reported in Tables

C.4 and C.5.
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Table C.4: Posterior estimates - structural parameters

Parameter
DSSW DSSW-FF DSSW-HF

mean 5% 95% mean 5% 95% mean 5% 95%
α 0.16 0.13 0.20 0.34 0.31 0.38 0.13 0.10 0.15
ζp 0.82 0.76 0.89 0.38 0.29 0.47 0.89 0.84 0.94
ιp 0.33 0.06 0.58 0.36 0.09 0.64 0.09 0.01 0.16
S” 6.12 3.87 8.33 0.10 0.10 0.10 6.30 4.22 8.53
h 0.74 0.68 0.80 0.79 0.72 0.85 0.84 0.81 0.88
a” 0.22 0.07 0.37 0.50 0.29 0.70 0.27 0.10 0.42
νl 1.95 1.06 2.84 3.75 2.75 4.75 4.62 3.25 5.92
ζw 0.50 0.34 0.64 0.09 0.06 0.13 0.53 0.45 0.59
ιw 0.06 0.01 0.10 0.26 0.11 0.41 0.09 0.02 0.16
r∗ 1.41 0.65 2.11 1.46 0.79 2.09 1.87 1.33 2.43
ψ1 1.89 1.47 2.31 2.22 2.00 2.45 1.29 1.20 1.40
ψ2 0.09 0.02 0.16 0.19 0.14 0.24 0.01 0.00 0.01
ρR 0.77 0.73 0.82 0.49 0.40 0.59 0.70 0.66 0.73
π∗ 4.43 3.22 5.57 2.80 0.95 4.54 1.83 0.01 3.23
γ 1.41 0.89 1.92 1.48 0.97 1.98 1.47 1.13 1.84
λf 0.28 0.12 0.43 0.19 0.08 0.30 0.57 0.35 0.82
g∗ 0.25 0.14 0.36 0.31 0.24 0.40 0.18 0.10 0.24
Ladj 662.4 654.7 669.6 661.5 659.9 663.0 648.0 634.2 663.4
ν 0.98 0.98 0.98
χ 0.13 0.11 0.14
σ 0.29 0.27 0.30
Dadj 0.24 0.16 0.32 0.65 0.49 0.78
a 0.19 0.17 0.21
βi 0.98 0.97 0.99
m 0.79 0.79 0.80
So” 1.31 0.89 1.70
λd 0.01 0.00 0.01
np 0.21 0.19 0.22

Qo,adj 0.14 0.08 0.21
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Table C.5: Posterior estimates - shocks

Parameter
DSSW DSSW-FF DSSW-HF

mean 5% 95% mean 5% 95% mean 5% 95%
ρz 0.14 0.04 0.23 0.15 0.07 0.23 0.09 0.02 0.15
ρϕ 0.90 0.83 0.98 0.98 0.96 0.99 0.99 0.99 0.99
ρλf 0.41 0.08 0.70 0.95 0.92 0.97 0.77 0.65 0.90
ρµ 0.76 0.69 0.83 0.88 0.83 0.93 0.84 0.79 0.89
ρb 0.43 0.19 0.65 0.47 0.30 0.63 0.34 0.21 0.47
ρg 0.93 0.90 0.96 0.94 0.93 0.96 0.96 0.94 0.98
ρν 0.50 0.42 0.60
ρσ 0.93 0.91 0.96
ρa 0.92 0.89 0.94
ρm 0.97 0.95 0.99
ρµo 0.96 0.93 0.98
ρλd 0.85 0.79 0.91
σz 0.84 0.73 0.95 1.03 0.91 1.14 0.75 0.68 0.82
σϕ 5.79 3.26 7.90 3.65 2.74 4.53 13.35 9.27 17.36
σλf 9.37 4.19 14.74 6.52 3.25 10.36 9.26 5.02 13.06
σµ 5.91 3.82 7.93 0.36 0.33 0.39 4.13 2.83 5.59
σb 2.83 2.13 3.51 3.33 2.32 4.33 4.08 3.03 4.99
σg 0.67 0.59 0.74 0.69 0.62 0.76 0.67 0.60 0.73
σR 0.33 0.28 0.37 0.46 0.38 0.53 0.29 0.26 0.32
σν 0.75 0.66 0.83
σσ 7.90 6.42 9.31
σa 14.64 10.26 18.50
σm 1.68 1.52 1.85
σµo 2.09 1.79 2.47
σλd 40.12 31.50 48.11
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